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In most threshold Elliptic Curve Digital Signature Algorithm (ECDSA) signatures using additively homomorphic encryption, the zero-
knowledge (ZK) proofs related to the ciphertext or the message space are the bottleneck in terms of bandwidth as well as computation
time. In this paper, we propose a compact ZK proof for relations related to the Castagnos–Laguillaumie (CL) encryption, which is
33% shorter and 29% faster than the existing work in PKC 2021. We also give new ZK proofs for relations related to homomorphic
operations over the CL ciphertext. These new ZK proofs are useful to construct a bandwidth-efficient universal composable-secure
threshold ECDSA without compromising the proactive security and the non-interactivity. In particular, we lowered the communication
and computation cost of the key refresh algorithm in the Paillier-based counterpart from O(n3) to O(n2). Considering a 5-signer setting,
the bandwidth is better than the Paillier-based counterpart for up to 99, 95 and 35% for key generation, key refreshment and pre-
signing, respectively.
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1. INTRODUCTION
Threshold signatures [1] allow multiple parties to sign a mes-
sage jointly and the resulting signature can be verified with a
single public key. Threshold Elliptic Curve Digital Signature Algo-
rithm (ECDSA) signatures can be easily integrated into existing
blockchain systems using ECDSA signatures. In Bitcoin, users can
create a multisig address of n public keys to support the function-
ality of threshold signing using a naive way: t ECDSA signatures
are generated and the signatures are valid only if they can be
verified by any t out of n public keys in the address. However,
the signature size is large (O(t)) in this naive approach and it
results in a higher transaction cost. Therefore, threshold ECDSA
signatures are useful to replace the existing multisig address in
Bitcoin.

Many existing threshold ECDSA signatures [2–7] use an additive
homomorphic encryption with a zero-knowledge (ZK) proof as a
building block. Some schemes [2, 4, 6] use the Paillier encryp-
tion [8]. However, the size of the message space for the Paillier
encryption does not match the order of the elliptic curve group
used by ECDSA. Therefore, a range proof is needed to ensure
that the encrypted message is still within a suitable range. This
range proof is expensive in terms of bandwidth. A new additive
homomorphic encryption is proposed by Castagnos and Laguil-
laumie [9] (CL encryption) and it can be implemented in a class
group of imaginary quadratic order. The advantage of the CL
encryption is that the size of the message space can be set as the
order of the elliptic curve group. Some recent threshold ECDSA
schemes [3, 5] used the CL encryption to lower the commu-
nication bandwidth, without the need of the additional range

proof. It comes with a price of a higher computation cost for the
signers.

1.1. Motivation
ZK proofs related to the class group and the CL encryption are
complicated since they are mostly related to relations in an
unknown order group G with a known order subgroup F. Earlier
scheme [10] used a ZK proof with a single bit challenge and
repeated it for λs times for a soundness error of 2−λs due to the
inability to compute the inverse in Z (instead of Z�, q is the
unknown group order) when building up soundness extractor. For
the discrete logarithm (DL) relation in G, a lowest common multiple
trick [3] was proposed to reduce the proof size of [10] by 10 times,
at the cost of relaxing the relation to a more loosed one. Yuen et al.
[5] proposed a compact ZK proof for the (generalized) DL relation
which further reduced the proof size of [3] by around four times.

A ZK proof for the well-formedness of a CL ciphertext is also
used in the signing phase of two-party ECDSA [10] and threshold
ECDSA [3]. Castagnos et al. [3] proposed a ZK proof which is around
eight times shorter than the single bit challenge ZK proof in [10], at
a cost of running n extra ZK proofs for the DL relation in G during
the key generation phase by the n participating parties. Yuen et
al. [5] proposed an alternative solution which is only four times
shorter than [10], but instead requires t extra ZK proofs for the DL
relation by the t signing parties.

Recently, a threshold ECDSA using the CL encryption was
proposed by Castagnos et al. [7], with the new properties of non-
interactive signing and identifiable abort. However, it cannot
achieve universal composable (UC) security. For the theoretical

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1265/7188842 by Pokfulam
 U

niv user on 27 April 2024


 8018 15516 a 8018 15516 a
 
mailto:hdcui@cs.hku.hk
mailto:hdcui@cs.hku.hk
mailto:hdcui@cs.hku.hk


1266 | H. Cui et al.

complexity, the scheme from [7] reduces the bandwidth consump-
tion of the Paillier-based threshold ECDSA [11] by up to a factor
of 10. However, [7] requires an expensive interactive setup as
[3]. Another threshold ECDSA using CL encryption was proposed
by Deng et al. [12], which introduces a weaker soundness called
promise extractability and waives the interactive setup. However,
they cannot achieve the non-interactive signing and proactive
security.

1.2. Our Contributions
In this paper, we focus on three research questions. Firstly, we
would like to further improve the bandwidth as well as the
running time of the above ZK proofs. Secondly, we would like to
propose ZK proofs that are useful in other threshold ECDSA sig-
natures, for example, threshold ECDSA with identifiable abort [4],
or UC-secure threshold ECDSA [13]. In particular, one commonly
used ZK proof is to prove the knowledge of (A, B) such that the
plaintext m in a CL ciphertext is transformed to a ciphertext of
Am + B. This type of relation is called the affine transformation, in
which the prover does not have the knowledge of m. Thirdly, we
evaluate the improvement of using the CL encryption with our
new ZK proof for affine transformation in the Paillier-based UC-
secure threshold ECDSA signatures [13].

The main contributions are as follows.

• We improve the ZK proofs for DL (and its generalization) and
the well-formedness of a CL ciphertext in [5]. The proof size is
reduced by at least 33% and the running time for the prover is
reduced by at least 29%. The novel ZK proofs can be directly
adopted in the two threshold ECDSA settings in [5] achieving
more efficient performance.

• We give a new ZK proof for the affine transformation over
the CL ciphertext. It can be used for threshold ECDSA with
identifiable abort [4], or UC-secure threshold ECDSA [13].

• When applied to UC-secure threshold ECDSA, we have the
most bandwidth-efficient UC-secure threshold ECDSA. We
lowered the communication and computation cost of the key
refresh algorithm in [13] from O(n3) to O(n2).

1.3. Overview of Our Construction
Following the settings in the CL encryption [9], we use an unknown
order group G, which contains a subgroup F in which the DL
problem is tractable. Consider the argument of knowledge for a
simple DL relation R in G for some group elements g, w ∈ G \ F:

R = {x ∈ Z : w = gx}.

For the DL relation in an unknown order group, Boneh et al. [14]
proposed to use a random prime � as a challenge, and the prover
computes d and e ∈ [0, � − 1] such that x = d� + e. The prover
sends D = gd and e to the verifier to check if D�ge = w. Yuen et al.
[5] showed that this method does not work if G has a known order
subgroup F with a generator f . One possible attack is that w = gxf y

for some x, y ∈ Z. The adversary can set D′ = gdf y/�. The value
(D′, e) can also pass the verification. Therefore, they proposed
another round of challenges using the prime q, the order of F.
The prover additionally needs to compute r and s ∈ [0, q − 1] such
that x = rq + s. The prover also sends R = gr and s to the verifier
to check if Rqgs = w. This checking eliminates the possibility of
having some order q element in w, at a cost of almost doubling
the proof size and the running time in the original scheme [14].

Single factorization technique. In this paper, we propose to use a
single factorization to replace the two-round factorization used in

the argument of knowledge in [5]. Roughly speaking, the verifier
picks a random prime � < q as a challenge, and the prover
computes d′ and e′ ∈ [0, � − 1] such that x = d′q� + e′. The prover
now sends D′ = gd′

and e′ to the verifier to check if D′q�ge′ = w. This
method can also prevent the attack mentioned above, without the
need of doubling the proof size and the running time of [14]. This
argument of knowledge can be extended to a ZK proof.

One technical obstacle is that we need to handle the sound-
ness proof differently. In previous works [5, 14], the witness x is
extracted by rewinding multiple times to obtain (xi, ei, �i) such that
xi ≡ ei mod �i. By the Chinese Remainder Theorem (CRT), we can
extract a unique witness x <

∏
i �i such that x ≡ ei mod �i. Using

our single factorization proof, we get xi ≡ e′
i mod q�i. They cannot

be combined by the CRT directly. We further split the equations
into mod q and mod �i. Since q and �i are set as distinct primes,
these split equations can be combined by the CRT to extract the
required witness x. Hence we can achieve soundness in our ZK
proof of DL relation in G. We also apply this technique in our ZK
proof for the relation Renc (knowing the plaintext encrypted in a
CL ciphertext) and its variant Rlog (knowing the plaintext of a CL
ciphertext is equal to the DL of an element in the ECC group).

ZK proofs for affine transformation. In this paper, we give new
ZK proofs related to the affine transformation on a CL ciphertext.
Denote C as a CL ciphertext for a plaintext m. Since the CL
encryption is additive homomorphic, anyone can turn C into a
ciphertext C′ which is the encryption of Am + B, where A, B is an
integer. The prover who perform this transformation can generate
a ZK proof for the witness (A, B). We give a compact ZK proof
for the affine transformation relation Raff, as well as two related
relations Raff-p and Raff-g defined in [13].

Applications in UC, non-interactive threshold ECDSA. We
demonstrate the advantage of our bandwidth-efficient ZK
proofs by transforming the Paillier-based threshold ECDSA [13]
into CL-encryption-based1. The resulting scheme is UC-secure
(composable security), non-interactive (one round online signing
phase) and proactive (periodic key refresh).

Using the Paillier encryption [8], the threshold ECDSA in [13]
uses a lot of ZK proofs related to the Paillier encryption in the
pre-signing phase and the key refresh phase. In the pre-signing
phase involving n parties, there are n(n − 1) ZK proofs for Renc,
and 2n(n − 1) ZK proofs for the DL in the Paillier group, i.e. Rlog in
[13]. They can be directly changed to 3n ZK proofs in our CL-based
counterpart if the CL encryption is employed. The bandwidth and
computation complexity for these ZK proofs are lowered from
O(n2) to O(n). There are still 2n(n − 1) ZK proofs for the affine
transformation of the Paillier/CL ciphertext in the pre-signing
phase. In the key refresh phase involving n parties, [13] used 2n ZK
proofs for showing a modulus is Paillier–Blum denoted by Rmod, n
ZK proofs that s belongs to the multiplicative group generated by
t in the Paillier group denoted by Rprm and n(n − 1)2 ZK proofs
for the Paillier version of Rlog. The overall complexity is O(n3).
When adopting the CL encryption, they can be replaced by only
n(n − 1) ZK proofs for Rlog. The overall complexity is lowered to
O(n2) for both the bandwidth and computation. Similarly, in the
key generation phase, we replace the two ZK proofs for Rmod and
one ZK proof for Rprm with a single ZK proof for RRepS described
in Section 3.1.

The higher complexity of the number of ZK proofs in [13] is led
by that their ZK proofs (ZK proofs other than those for Rmod and

1 We note that [11] is the combination of UC-secure threshold ECDSA [13]
and threshold ECDSA with identifiable abort [4]. Since the main goal of this
paper is about bandwidth efficiency, we do not include identifiable abort for
optimal performance.
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Rprm) should use the verifier’s public Ring–Pedersen parameters.
Thus, one relation proved to n different receivers results in n
different ZK proofs, while in CL setting there is no such concern,
which further reduces the bandwidth.

Another bottleneck of [13] is the tedious ZK proofs for Rmod

and Rprm, denoted by πmod and πprm respectively, used in both key
generation and key refreshment. They require m = 80 times repe-
titions in proof generation and verification to achieve a soundness
error of 2−80. The repetitions are expensive and require large
computation and communication costs, which are unavoidable.
Moreover, πmod should be executed twice due to their extraction
needs, while the CL setting does not have this concern.

In terms of computation time, we can reduce the running
time of the key generation and the key refresh algorithms by
significantly reducing the total number of ZK proofs. However, we
note that the computation time related to the group used by the
CL encryption is higher than the computation time related to the
Paillier group. Hence, the running time of our PreSign algorithm
is 10+ times more expensive than the Paillier-based counterpart
[13]. Nevertheless, the online signing time is still the same as [13].
The running time in the online phase is usually considered to be
more important for the online/offline signature.

2. PRELIMINARIES
Notations. We express d being sampled from a distribution D
and b is sampled uniformly in the set B by d ← D and b

$←− B,
respectively. A negligible (resp. exponential) function is denoted
as negl(λ) (resp. exp(λ)). We denote ordG(g), εs and εd as the
order of g ∈ G, the parameter for soundness error and statistical
distance, respectively. In particular, we adopt a group where the
hard subgroup membership assumption [10] holds.

2.1. Groups
We remark some group generation algorithms as in [10]:

• The GGenECC algorithm generates a cyclic group Ĝ with prime
order q, and returns GECC = (Ĝ, q, P̂), where P̂ is a generator of
Ĝ. Note that the security parameter input is 1λ.

• The GGenHSM algorithm returns GHSM = (s̃, g, f , gq, G̃, G, F, Gq)

with the inputs of a prime number q and a security parameter
1λ. The finite abelian group (G̃, ·) is of order q · ŝ, where the
length of ŝ is a function of λ and gcd(q, ŝ) = 1. The value
of the upper bound of ŝ is s̃; any element can be decided
in polynomial time if it is in G̃. The set (F, ·) is the unique
cyclic subgroup of G̃ of order q, generated by f . The group
generated by gq is a subgroup of G of order s is denoted as
Gq := {xq, x ∈ G}. The cyclic subgroup of G̃ of order q · s is
denoted as (G, ·), where s divides ŝ. With the construction of
F ⊂ G, it holds that G = Gq ×F and g := f ·gq is the generator of
G. A polynomial time algorithm Solve solves the DL problem
in F:

x ← SolveGHSM, q (f
x), ∀x

$←− Zq.

We call this HSM group, and drop the subscript for Solve in the
following paragraphs for simplicity.

Class groups of imaginary quadratic order. The HSM group
can be instantiated by class groups of imaginary quadratic order.

The GGenHSM algorithm computes �K = −qq̃ and �q = q2�K,
where q̃ is a random prime such that qq̃ ≡ 1 (mod 4) and (q/q̃) =
−1.

Denote G̃ as the class group Cl(�q) with order of h(�q) = q · h(�K).

It computes s̃ :=
⌈

1
π

log |�K|√|�K|
⌉

and thus h(�K) < s̃.

GGenHSM requires F = 〈 f 〉, where f = [(q, q2)] ∈ Cl(�q). It takes
a small prime r, where r �= q and ( �K

r ) = 1, and sets an ideal lying
above r as I. The algorithm computes gq = [ϕ−1

q (I2)]q ∈ Cl(�q) and
sets Gq = 〈gq〉, where ϕ−1 is the surjection defined in the Algorithm
1 of [15]. It finally computes g = f · gq, sets G = 〈g〉, and outputs
GHSM = (s̃, g, f , gq, G̃, G, F, Gq).

2.2. Elliptic Curve Digital Signature Algorithm
The algorithm of ECDSA can be divided into four components;
we review them as follows: Setup. With the security parameter
1λ, it runs GECC ← GGenECC(1λ) and the outputs param = GECC.
The input param is omitted for simplicity. KeyGen. It returns (Q̂, x),

where x
$←− Zq is a random secret key, and Q̂ = P̂x is the public key.

Sign. It computes R̂ = (rx, ry) = P̂k, r = rx mod q, and s = k−1(xr +
H(m)) mod q, where k

$←− Zq and m is an input message. It outputs
(r, s) as the signature. Verify. It computes R̂ = (rx, ry) = (Q̂rP̂H(m))1/s

after getting the public key Q̂, a message m and a signature (r, s).
It outputs 1 if r = rx and 0 otherwise.

2.3. CL Encryption from HSM Group
A framework of a group with HSM was introduced in [9] for an easy
DL subgroup. The algorithm of CL encryption from class group
of quadratic fields [10] is divided into six components; we review
them as follows:

Setup. Given a prime p and a security parameter 1λ, it runs
GHSM ← GGenHSM, q(1λ) and parses GHSM = (s̃, g, f , gq, G̃, G, F, Gq),
then outputs param = GHSM. Set S = s̃ · 2εd , where εd are some
statistical distance. The input param is omitted for simplicity.

KeyGen. It returns (sk, pk), where sk
$←− [0, S] is randomly picked

and pk = gsk
q .

Encrypt. With input a message m and a public key pk, it returns

the ciphertext C = (C1, C2) with random ρ
$←− [0, S], where C1 =

fmpkρ , C2 = gρ
q .

Decrypt. With input a ciphertext C = (C1, C2) and a secret key sk,
it returns m ← Solve(M), where M = C1/Csk

2 .
EvalScal. With input a scalar s, a ciphertext C = (C1, C2) and a

public key pk, it returns C′ = (C′
1 = Cs

1, C′
2 = Cs

2).
EvalSum. With input two ciphertexts C = (C1, C2), C′ = (C′

1, C′
2)

and a public key pk, it returns Ĉ = (Ĉ1 = C1C′
1, Ĉ2 = C2C′

2).

2.4. Generic Group Model for HSM Group
The HSM group is modeled by the generic group model for groups
of unknown order [16] together with groups of known order. Yuen
et al. [5] generalized the generic group model for HSM Group, and
they are reviewed as follows:

A group G = G1 × G2 is parameterized by three integer public
parameters q, A, B. G is defined by a random injective function σ :
Z|G1 |×q → {0, 1}� for some �, where 2� 
 |G1| × q. The order of G1 is
sampled uniformly from [A, B] and the order of G2 is q. The group
elements are σ(0), σ(1), ..., σ(|G1| × q − 1).

A generic algorithm A is a probabilistic algorithm that takes
(q,L) as input, where L = L0 ∪ L1 is a list that is initialized with
the encodings. We further defined a function π(a, b) = qa + b for
a ∈ Z|G1 | and b ∈ Zq. A queries two generic group oracles:

• O1 takes b′ ←− {0, 1}. If b′ = 0, it samples a random a ∈ Z|G1 |,
b ∈ Zq and returns σ(π(a, b)), which is appended to L0. If b′ =
1, it samples a random b ∈ Zq and returns σ(π(0, b)), which is
appended to L1.
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• When L has size q̃, O2(i, j, ±) takes i, j ∈ [1, q̃] as indices and
a sign bit, and returns σ(π(ai ± aj mod |G1|, bi ± bj mod q)),
which is appended to L0 if ai ± aj �= 0 mod |G1|. Otherwise, it
is appended to L1.

This model treats the output of O1(1) as the elements in F and
the output of O1(0) as the element in G for the group GHSM. For
some random a, the generator gq in Gq is initialized as σ(π(a, 0)).
It is difficult to distinguish whether it is in Gq, given the output of
O1(0). Suppose that for some b∗ ∈ Zq, f is initialized as σ(π(0, b∗)).
For input f̃ ∈ F, the Solve algorithm can be modeled by finding the
encoding of f̃ in L1 as σ(π(0, b̃)) for some b̃ ∈ Zq and returning b̃/b∗

mod q. We recap two related lemmas from [5].

Lemma 2.1. (Subgroup Element Representation) Let G be a
generic group and A be a generic algorithm making q1

queries to O1 and q2 queries to O2. Let {g1, ..., gm0 } be the
outputs of O1(0). There is an efficient algorithm Ext
that, given as input the transcript of A’s interaction
with the generic group oracles, produces, for every
element u ∈ G that A outputs, a tuple (α1, ..., αm0 ) ∈ Z

m

and γ ∈ Zq such that u = f γ · ∏m0
i=1 gαi

i and αi ≤ 2q2 .

Lemma 2.2. (Subgroup Discrete Logarithm) Let
G = G1 × G2 be a generic group where |G1| is a
uniformly chosen integer in [A, B] and 1/A and 1/|B − A|
are negligible in λ. Let A be a polynomial time generic
algorithm and let g1, ..., gm0 be the outputs of O1(0). The
probability that A succeeds in outputting
α1, ..., αm0 , β1, ..., βm0 ∈ Z and γ , δ ∈ Zq, such that
f γ · ∏m0

i=1 gαi
i = f δ · ∏m0

i=1 gβi
i ∈ G, αi �= βi and γ �= δ mod q, is

negligible.

2.4.1. Assumptions
Let D (resp. Dq) be a distribution over the integers. From the

uniform distribution in G (resp. Gq), the distribution over {gx, x
$←−

D} (resp. {gx
q, x

$←− Dq}) is at a distance less than 2λ.

Hard Subgroup Membership Assumption. The hard subgroup
membership assumption for the group GHSM means that is diffi-
cult to identify the elements of Gq in G. For every polynomial time
algorithm A:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

GHSM ← GGenHSM, q(1λ),

x ←↩ D, x′ ←↩ Dq, b
$←− {0, 1},

Z0 = gx, Z1 = gx′
q ,

b∗ ← A(GHSM, Zb, Solve(·))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ).

Adaptive Root Subgroup Assumption. The adaptive root
subgroup assumption is the modification of the adaptive root
assumption [14] in the group GHSM. Denote Primes(λ) as the set of
odd primes less than 2λ.

The adaptive root subgroup assumption holds for the group
GHSM if for all polynomial time algorithms (A0,A1):

Pr

⎡
⎢⎢⎢⎢⎣

u� = w,

wq �= 1

∣∣∣∣∣∣∣∣∣∣

q > 2λ,GHSM ← GGenHSM, q(1λ),

(w, state) ← A0(GHSM),

�
$←− Primes(λ), u ← A1(�, state)

⎤
⎥⎥⎥⎥⎦ ≤ negl(λ).

Yuen et al. [5] show the intractability of the adaptive root
subgroup problem and the non-trivial order element problem in
a generic group model.

Corollary 2.1. (Adaptive Root Subgroup Hardness). Let
G ∈ GHSM be a generic group where |Gq| is a uniformly
chosen integer in [A, B] such that 1/A and 1/|B − A| are
negligible in λ. Any generic adversary A that performs a
polynomial number of queries to oracle O2 succeeds in
breaking the adaptive root subgroup assumption on
GHSM with at most negligible probability in λ.

Corollary 2.2. (Non-trivial order hardness). Let G ∈ GHSM be
a generic group where |Gq| is a uniformly chosen integer
in [A, B] such that 1/A and 1/|B − A| are negligible in λ.
Any generic adversary A that performs a polynomial
number of queries to oracle O2 succeeds in finding an
element h �= 1 ∈ G and a positive integer d such that
hd = 1 and d < q with at most negligible probability in λ.

3. ZK PROOFS FOR HSM GROUP WITH
TRUSTLESS SETUP
In this section, we will give a number of ZK proofs for relations
that are useful in constructing threshold ECDSA. They are mostly
related to the DL and the ciphertext of the CL encryption.

3.1. ZK Proof for Multi-exponentiation
We now construct an argument of knowledge for the following
representation relation:

RRepS = {w ∈ G; �x ∈ Z
n : w =

n∏
i=1

gxi
i },

where g1, . . . , gn ∈ G \ F are in the common reference string GHSM.
This is the generalization of the DL relation (in which n = 1). The
ZK proof is given in Algorithm 1.

Theorem 3.1. Protocol ZKPoKRepS is an argument of
knowledge for RRepS in the generic group model.

2 To reduce the round complexity, we can set c = H1(R), � = H2(c), where H1
and H2 are hash functions which output a number in [0, q − 1] and a suitable
prime number, respectively.
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Proof. Let (�1, D1, �e1) and (�2, D2, �e2) be two accepting transcripts
for ZKPoKRepS. We first prove a claim.

Claim. With overwhelming probability for fixed (q, R, c) there
exists �α, �β and �x = (x1, ..., xn) such that �x = �αq�1 + �e1 = �βq�2 + �e2

and Rwc = Rep(�x) = ∏n
i=1 gxi

i , and each xi for i ∈ [1, n] is bounded by
2q2 .

proof. By the verification equation of this protocol, we have
Dq�1

1 Rep(�e1) = Dq�2
2 Rep(�e2) = Rwc. With overwhelming probability

the generic group adversary knows α1, ..., αm and β1, ..., βm and
m > n such that D1 = ∏m

i=1 gαi
i and D2 = ∏m

i=1 gβi
i . By lemma

2.2 with overwhelming probability αiq�1 + �e1[i] = βiq�2 + �e2[i] for
each i ≤ n and αi�1 = βi�2 for each i ∈ [n + 1, m] and thus
�1|βi�2 for each i ∈ [n + 1, m]. We note that �1 and �2 are co-
prime unless �1 = �2 which happens with probability λ ln 2

2λ , and
that αi ≤ 2q2 and αi is chosen before �2 is sampled. Hence, with
overwhelming probability αi = βi = 0 for each i ∈ [n+1, m] in which
case Rwc = ∏n

i=1 gαiq�1+�e1[i]
i = ∏n

i=1 gβiq�2+�e2[i]
i . Setting �α = (α1, ..., αn)

and �β = (β1, ..., βn) we conclude with overwhelming probability
Rwc = Rep(�αq�1 + �e1) = Rep( �βq�2 + �e2). Finally, if A has made at
most q2 queries to O2 then αi < 2q2 and βi < 2q2 for each i. The
claim holds. �

Consider any third transcript, w.l.o.g. (�3, D3, �e3). Involving this
claim again, there exists �α′, �β′, �x′ in Z

n such that �x′ = �α′q�2 + �e2 =
�β′q�3 +�e3. Thus with overwhelming probability �x′− �x = ( �α′− �β)q�2.
However, since �2 is sampled randomly from an exponentially
large set of primes independent of �e1, �e3, �1 and �3 (which fix the
value of �x′ − �x), there is a negligible probability that �x′ − �x = 0
mod q�2, unless �x′ − �x = 0. We draw a conclusion that by a
simple union bound over the poly(λ) number of transcripts, for
any polynomial number of accepting transcripts {(�i, Di, �ei)}poly(λ)

i=1 ,
there exists a single �x such that �x = �ei mod q�i for all i.

Now we describe the extractor Ext:

1. Run A0 to get output (w, state).
2. Let L ← {}. Run Step 1 of Protocol ZKPoKRepS with A1 on

input (w, state).
3. Run Steps 2–4 of Protocol ZKPoKRepS with A1, sampling

fresh randomness c and � for the verifier. If the transcript
(R, c, �, D, �e) is accepting, set L ← L ∪ {(�e, �)}, and otherwise
repeat this step.

4. Compute �e′0 = �e1 mod q and �e′i = �ei mod �i for each (�ei, �i) ∈ L.
Compute by CRT �s = (s1, . . . , sn) such that �s = �e′0 mod q and
�s = �e′i mod �i for each (�ei, �i) ∈ L. If

∏n
i=1 gsi

i �= Rwc, return to
Step 4.

5. Consider the intermediate transcript as (R, c, �s). Run from
step 2 for the second time and obtain (R, c′, �s′).

6. Compute �si = si − s′i for i ∈ [1, n] and �c = c − c′. Output
�x = (x1, . . . , xn) for xi = �si /�c.

Analysis for Step 4. Suppose that after some polynomial number
of rounds the extractor has obtained M accepting transcripts

(R, c, �i, Di, �ei) for independent values of �i
$←− Primes(λ), by the

claim above, with overwhelming probability there exists �s =
(s1, . . . , sn) ∈ Z

n such that �s = �ei mod q�i, and
∏n

i=1 gsi
i = Rwc,

sj < 2q2 for j ∈ [n]. Hence, the CRT algorithm used in Step 4 will
recover the required vector �s once |L| > q2. Since a single round
of interaction with A1 results in an accepting transcript with
probability ε ≥ 1/poly(λ), in expectation the extractor obtains
|L| > q2 accepting transcripts for independent primes �i after
q2 · poly(λ) rounds. Hence, Ext output �s such that

∏n
i=1 gsi

i = Rwc

in expected polynomial time.
Analysis for Step 6. It remains to argue that Ext succeeds with

overwhelming probability in Step 6. W.l.o.g., assume that c > c′, by

Step 5, we have
∏n

i=1 gsi
i · w−c = ∏n

i=1 g
s′

i
i · w−c′ = R. Denote �c = c′ −

c, �s = si −s′
i for i ∈ [0, n]. We have

∏n
i=1 g

�si
i = w�c = (

∏m
i=1 g

α′
i

i · f γ ′
)�c

for some α′
i ∈ Z and γ ′ ∈ Zq by Lemma 1. By Lemma 2, �si =

α′
i�c for i ∈ [1, n], α′

i = 0 for i ∈ [n + 1, m] and γ ′ = 0 mod q with

overwhelming probability. If μ = ∏n
i=1 g

�si
/�c

i �= w, then μ�c = w�c .
It follows that μ/w is an element of order 1 < �c < q. By Corollary
2.2, the probability of finding a non-trivial order of μ/w �= 1 is
negligible. Hence, μ = w with overwhelming probability. It implies
that �si /�c ∈ Z for all i. Hence, the witness �x = (x1, . . . , xn) can be
extracted as in Step 6. �

Theorem 3.2. The protocol ZKPoKRepS is an honest-
verifier statistically zero-knowledge argument of
knowledge for relation RRepS in the generic group model.

Proof. The simulator Sim picks a random challenge c′ $←− [0, q −
1] and �

$←− Primes(λ). It picks random d′
1, . . . , d′

n
$←− [0, B −

1], e′1, . . . , e′n $←− [0, q� − 1]. It computes: D′ = ∏n
i=1 g

d′
i

i , R′ =
D′q�

∏n
i=1 g

e′
i

i · w−c′
.

We argue that the transcript (R′, c′, (D′, �e′ = (e′
1, . . . , e′

n)), �
′) is

indistinguishable from a real transcript between a prover and a
verifier. Sim chooses �′, c′ identically to the honest verifier. R′ is
uniquely determined by the other values such that the verifica-
tion holds.

We must show that in the real protocol, independent of � and
c, the values in �e have a negligible statistical distance from the
uniform distribution over [0, q� − 1] and each gdi

i has a negligible
statistical distance from uniform over G. In addition, we must
argue that D and �e are independent. For this we use the following
facts, which are easy to verify:

1. Fact 1: If Z is a uniform random variable over N consecutive
integers and m < N, then Z mod m has a statistical distance
at most m/N from the uniform distribution over [0, m − 1].

2. Fact 2: For independent random variables X1, X2, Y1, Y2, the
distance between the joint distributions (X1, X2) and (Y1, Y2)

is at most the sum of statistical distances of X1 from Y1 and
X2 from Y2. Similarly, if these variables are group elements
in G, the statistical distance between X1 · X2 and Y1 · Y2 is no
greater than the sum of statistical distances of X1 from Y1

and X2 from Y2.
3. Fact 3: Consider random variables X1, X2, Y1, Y2 with statis-

tical distances s1 = �(X1, Y1) and s2 = �(X2, Y2), where
Pr(X1 = a|X2 = b) < Pr(X1 = a) + ε1 and Pr(Y1 = a|Y2 =
b) < Pr(Y1 = a) + ε2 for all values a, b. Then the joint
distributions (X1, X2) and (Y1, Y2) have a statistical distance
at most s1 +s2 +ε1|supp(X2)|+ε2|supp(Y2)|, where supp is the
support.

Consider fixed values of c, x1, . . . , xn and �. In the real protocol,
the prover computes si = ki+cxi, where k is uniform in [−B, B] and t
is uniform in Zq, and sets ei = si mod q�. By Fact 1, the value of si is
distributed uniformly over a range of 2B + 1 consecutive integers,
thus ei has a statistical distance at most q�/(2B + 1) from uniform
over [0, q� − 1]. This bounds the distance between the real ei and
the simulated e′

i which is uniform over [0, q� − 1].

Next, we show that each gdi
i is statistically indistinguishable

from uniform in the subgroup generated by gi (denoted as Gi).
The distribution of gdi

i over Gi is determined by the distribution
of di mod |Gi|. Consider the distribution of di = � si

q�
� over the

consecutive integers in [� cxi−B
q�

�, � cxi+B
q�

�]. Denote this by the random
variable Z. The probability that di = z is the probability that si falls
in the interval [zq�, (z + 1)q�− 1]. Hence, Pr[di = z] = q�/(2B + 1) for
all z ∈ Z if zq� ≥ cxi − B and (z + 1)q� − 1 ≤ cxi + B. This probability
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may or may not hold for the two endpoints E1 = � cxi−B
q�

� and E2 =
� cxi+B

q�
�. Denote Y as the set of points with Pr[di = z] = q�/(2B + 1)

only. The distance of di from a uniform random variable UY over
Y is largest when the number of possible si mapping to E1 and
E2 are both q� − 1, i.e. cxi − B = 1 mod q� and cxi + B = q� − 2
mod q�. In this case, di is one of the two endpoints outside Y with
probability 2(q�−1)

2B+1 . As |Y| = 2B+3
q�

− 3, the statistical distance of di

from UY is at most 1
2 (|Y|( 1

|Y| − q�

2B+1 )+ 2(q�−1)

2B+1 ) = 5q�−4
2(2B+1)

<
2q�

B ≤ 2λ+1q
B .

Moreover, the statistical distance of di mod |Gi| from UY mod |Gi| is
no larger. By Fact 1, UY mod |Gi| has a statistical distance at most
|Gi |
|Y| ≤ 2λq|G|

2B+3−3q·2λ . By the triangle inequality, the statistical distance

of di mod |Gi| from uniform is at most 2λ+1q
B + 2λq|G|

2B+3−3q·2λ . This also

bounds the distance of gqi

i from uniform in Gi. The simulated
value q′

i is uniformly chosen from a set of size B. Again by Fact
1, if |Gi| < B, then d′

i mod |Gi| has a distance |Gi|/B ≤ |G|/B from

uniform. The simulated value g
d′

i
i has a distance at most |G|/B from

uniform in Gi. By the triangle inequality, the statistical distance of

gdi
i and g

d′
i

i is at most 2λ+1q
B + 2λq|G|

2B+3−3q·2λ + |G|
B <

(2λq+2)|G|+2λ+2q
2B+3−3q·2λ ≤ 1

n2εd+1 ,

if B ≥ n2εd (2λq + 2)|G| + nq · 2εd+λ+2 + 3q · 2λ−1 − 3
2 for some distance

parameter εd.
Finally, we consider the joint distribution of gdi

i and ei. Consider
the conditional distribution of di|ei. Note that di = z if (si −
ei)/(q�) = z. We repeat a similar argument as above for bounding
the distribution of di from uniform. For each possible value of z,
there always exists a unique value of si such that � si

q�
� = z and

si = 0 mod q�, except possibly at the two endpoints E1, E2 of the
range of di. When ei disqualifies the two points E1 and E2, then each
of the remaining points z /∈ {E1, E2} still has an equal probability
mass, and thus the probability Pr(di = z|ei) increases by at most

1
|Y| − q�

2B+1 . The same applies to the variable di|ei mod |Gi| and hence
the variable gdi |ei.

We can compare the joint distribution Xi = (gdi
i , ei) with the

simulated distribution Yi = (g
d′

i
i , e′

i) using Fact 3. Setting ε1 = 1
|Y| −

q�

2B+1 and ε2 = 0, the distance between these joint distributions is

at most 1
n2εd+1 + q�

2B+1 + ε1q� = 1
n2εd+1 + q2�2

2B+3−3q�
+ q�(1−q�)

2B+1 . Moreover,
as each Xi is independent from Xj for i �= j, we use Fact 2 to bound
the distance between joint distributions (gd1

1 , . . . , gdn
n , e1, . . . , en) and

(g
d′

1
1 , . . . , gd′

n
n , e′

1, . . . , e′
n) by the sum of individual distances between

each Xi and Yi, which is at most 1
2εd+1 + nq2�2

2B+3−3q�
+ nq�(1−q�)

2B+1 < 1
2εd+1 +

nq2�2

2B+3−3q�
< 1

2εd , where the last equality holds if B ≥ 2εd+2λnq2 + 3q ·
2λ−1 − 3

2 . Finally, this also bounds the distance between (D, �r) and

(D′, �r′), where D = ∏n
i=1 gdi

i and D′ = ∏n
i=1 g

d′
i

i . Combining the two
requirements on B (recall the first requirement is B ≥ n2εd (2λq +
2)|G| + nq · 2εd+λ+2 + 3q · 2λ−1 − 3

2 , which can be further required
by B ≥ nq · 2εd+λ+1|G|; and |G| = q · s > q), we obtain a simplified
requirement B ≥ nq · 2εd+2λ|G| = 2εd+2λnq2s̃. �

3.2. ZK Proof for the Well-formedness of a CL
Ciphertext
Consider a prover encrypted a message m ∈ Zq using a random-
ness ρ ∈ [0, S], for some honestly generated public key pk ∈ Gq3 .
We present a ZK proof of knowledge of the following relation:

REnc ={(pk, C1, C2); (m, ρ)|C1 ∈ G \ F; C2, pk ∈ Gq;

ρ ∈ [0, S]; m ∈ Zq : C1 = fmpkρ ∧ C2 = gρ
q }.

3 This condition holds if there is another explicit ZK proof of knowing
loggq

pk generated by the owner of the decryption key, or pk is honestly

generated by the verifier himself.

For the relation REnc, we cannot apply the protocol ZKPoKRepS
directly since f ∈ F. We propose a new ZK proof ZKPoKEnc for REnc

in Algorithm 2.

Theorem 3.3. The protocol ZKPoKEnc is an argument of
knowledge in the generic group model.

Proof. We rewind the adversary on fresh challenges � so that each
accepting transcript outputs an (eρ , �), where ρ∗ = eρ mod q�

by ZKPoKRepS with overwhelming probability. We consider the
following two cases:
Case 1. If pkρ∗ �= S1Cc

1f−um and (pkρ∗
)q �= (S1Cc

1f−um )q, then we
have pkρ∗ �= S1Cc

1f−um = Dq�

1 pkeρ . Let γρ = eρ−ρ∗
�

. Then Dq
1pkγρ is

an �-th root of (S1Cc
1f−um )/pkρ∗ �= 1. This breaks the adaptive root

subgroup assumption since (S1Cc
1f−um )q/(pkρ∗

)q �= 1.
Case 2. If pkρ∗ �= S1Cc

1f−um and (pkρ∗
)q = (S1Cc

1f−um )q, then S1Cc
1 =

pkρ∗
f δ′

for some δ′ �= um ∈ Zq. Then we have S1Cc
1f−um = pkρ∗

f δ′−um =
Dq�

1 pkeρ . Observe that pkρ∗
f δ′−um cannot cancel element f because

|δ′−um| < q. Instead, Dq�

1 pkeρ cancel out f and thus lies in Gq, which
leads to contradiction. Hence, by Corollary 2.1, pkρ∗

f um = S1Cc
1 with

overwhelming probability.
By rewinding, the extractor obtains a pair of accepting tran-

scripts with (ρ∗, um, c) and (s′
ρ , u′

m, c′). The extractor can compute

�ρ∗ = ρ∗ − s′
ρ and �um = um − u′

m mod q. We denote ρ = �ρ∗
�c

and

m = �um
�c

mod q. Hence we have C�c
1 = (pkρ fm)�c . If C1 �= pkρ fm, then

pkρ fm

C1
is a non-trivial element of order �c < q which contradicts

Corollary 2.2.
Note that our scheme includes a sub-protocol ZKPoKRepS on

input C2 w.r.t. bases gq ∈ G \ F. Since ZKPoKRepS is an argument
of knowledge, there exists an extractor to extract the same ρ such
that C2 = gρ

q .
Hence the extractor can output (m, ρ) such that C1 = pkρ fm,

C2 = gρ
q . �

Theorem 3.4. The protocol ZKPoKEnc is an honest-verifier
statistically zero- knowledge argument of knowledge for
relation REnc in the generic group model.

Proof. The simulator Sim randomly picks a challenge c′ ∈ [0, q − 1]
and a prime �′ ∈ Prime(λ). It picks randomly u′

m ∈ Zq, d′
ρ ∈ [0, B − 1]

and e′
ρ ∈ [0, q�′ − 1].
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It computes D′
1 = pkd′

ρ , D′
2 = g

d′
ρ

q , S′
1 = D′q�′

1 pke′
ρ f u′

m C−c′
1 , S′

2 =
D′q�′

2 g
e′
ρ

q C−c′
2 .

We argue that the simulated transcript (S′
1, S′

2, c′, u′
m, D′

1, D′
2, e′

ρ , �′)
is indistinguishable from a real transcript (S1, S2, c, um, D1, D2, eρ , �)
between a prover and a verifier. Sim chooses (�′, c′) identically to
the honest verifier. Both um and u′

m are uniformly distributed in
Zq. (S′

1, S′
2) is uniquely defined by the other values such that the

verification holds.
For simulated transcript (D′

1, D′
2, e′

ρ) and real transcript
(D1, D2, eρ), we want to prove that the simulator produces
statistically indistinguishable transcripts in that independent of �

and c, the values eρ have a negligible statistical distance from the
uniform distribution over [0, q� − 1] and each one of pkdρ , gdρ

q has
negligible statistical from uniform over Gk = 〈pk〉, Gq, respectively;
D1, D2 and eρ are independent.

Consider fixed values of c, ρ and �. In the real protocol, the
prover computes uρ = cρ + sρ , where sρ is uniform in [−B, B] and
sets eρ = uρ mod q�. By Fact 1, the value of uρ is distributed
uniformly over a range of 2B+1 consecutive integers, thus eρ has a
statistical distance at most q�/(2B+1) from uniform over [0, q�−1].
This bounds the distance between the real eρ and the simulated
e′
ρ , which is uniform over [0, q� − 1].

Next, we show that gdρ

q is statistically indistinguishable from

uniform in Gq. The distribution of gdρ

q over Gq is determined by the
distribution of dρ mod |Gq|.

Similar to Theorem 2, we conclude that the statistical distance of
dρ from UY is at most 1

2 [Y( 1
Y − q�

2B+1 )+ 2(q�−1)

2B+1 ] = 5q�−4
2(2B+1)

<
2q�

B ≤ 2λ+1q
B

and the statistical distance of dρ mod |Gq| from UY mod |Gq| will
not exceed. By Fact 1, UY mod |Gq| has a statistical distance at
most |Gq |

|Y| ≤ 2λq|Gq |
2B+3−3q·2λ . Thus, by triangle inequality, we have that

the statistical distance of dρ mod |Gq| from uniform is at most
2λ+1q

B + 2λq|Gq |
2B+3−3q·2λ . This also bounds the distance of gdρ

q from uniform
in Gq. The simulated value d′

ρ is uniformly chosen from a set of
size B. Again by Fact 1, if |Gq| < B, then d′

ρ mod |Gq| has a distance

|Gq|/B from uniform. The simulated value g
d′

ρ

q has a distance at
most |Gq|/B from uniform in Gq. By the triangle inequality again,

the statistical distance of gdρ

q and g
d′

ρ

q is at most 2λ+1q
B + 2λq|Gq |

2B+3−3q·2λ +
|Gq |

B <
(2λq+2)|Gq |+2λ+2q

2B+3−3q·2λ ≤ 1
2εd+2 if B ≥ 2εd+1(2λq + 2)|Gq| + 2εd+λ+3q +

3q · 2λ−1 − 3
2 for some distance parameter εd. Similarly, the same

argument holds for the distances of pkdρ and pkd′
ρ . Using Fact 3,

the distance between the joint distribution Xρ = (pkdρ , gdρ

q ) and

the simulated distribution Yρ = (pkd′
ρ , g

d′
ρ

q ) is at most 1
2εd+1 .

Finally, we consider the joint distribution of (pkdρ , gdρ

q ) and eρ .
Consider the conditional distribution of dρ |eρ . Note that rρ = z
if (sρ − eρ)/q� = z. We repeat a similar argument as above for
bounding the distribution of dρ from uniform. For each possible
value of z, there always exists a unique value of sρ such that
� sρ

q�
� = z and sρ = 0 mod q�, expected possibly at the two endpoints

E1 and E2 of the range of dρ . When eρ disqualifies the two points
E1 and E2, then each of the remaining points z /∈ {E1, E2} still have
equal probability mass, and thus the probability Pr(dρ = z|eρ)

increases by at most 1
|Y| − q�

2B+1 . The same applies to the variable

(pkdρ , gdρ

q )|eρ .

We can compare the joint distribution Xρ = (pkdρ , gdρ

q , eρ) with

the simulated distribution Yρ = (pkd′
ρ , g

d′
ρ

q , e′
ρ) using Fact 3. Setting

ε1 = 1
|Y| − q�

2B+1 and ε2 = 0, the distance between these joint

distributions is at most 1
2εd+1 + q�

2B+1 + ε1q� = 1
2εd+1 + q2�2

2B+3−3q�
+

q�(1−q�)

2B+1 < 1
2εd+1 + q�

2B+3−3q�
< 1

2εd , where the last equality holds

if B > 2εd+λq + 3q · 2λ−1 − 3
2 . This bounds the distance between

(D1, D2, eρ) and (D′
1, D′

2, e′
ρ).

Combining the two requirements on B (recall the first require-
ment is B ≥ 2εd+1(2λq + 2)|Gq| + 2εd+λ+3q + 3q · 2λ−1 − 3

2 for some
distance parameter εd), we can simplify the requirement as B ≥
2εd+λ+2qs̃. �

3.3. ZK Proof for Affine Transformation for CL
Ciphertext
We want to prove a relation between two CL ciphertext c and
c̃. Here c is the encryption of k using randomness r, but (k, r)
are not treated as witness of the ZK proof. The ciphertext c is
transformed to a ciphertext c̃ for a message kγ + β using the
additive homomorphic property of the CL encryption. Define ρ as
the randomness of encrypting β.

c = Encryptpk(k; r) = (C1 = f kpkr, C2 = gr
q)

c̃ = Encryptpk(kγ + β)

= EvalAdd(EvalScal(c, γ ), Encryptpk(β; ρ))

= EvalAdd((Cγ

1 , Cγ

2 ), (fβpkρ , gρ
q ))

= (C̃1 = Cγ

1 fβpkρ , C̃2 = Cγ

2 gρ
q )

So we obtain the following relation:

RAff = {(pk, C1, C2, C̃1, C̃2); (γ , β, ρ)|pk, C2 ∈ Gq;

C1 ∈ G \ F; γ , β ∈ Zq; ρ ∈ [0, S] :

C̃1 = Cγ

1 fβpkρ ∧ C̃2 = Cγ

2 gρ
q }.

Theorem 3.5. The protocol ZKPoKAff is an argument of
knowledge for RAff in the generic group model.

Proof. We rewind the adversary on fresh challenges � so that each
accepting transcript outputs an (eρ , eγ , �), where ρ∗ = eρ mod q�
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and γ ∗ = eγ mod q� with overwhelming probability. We consider
the following two cases:
Case 1. If pkρ∗

Cγ ∗
1 �= S1C̃c

1 f−uβ and (pkρ∗
Cγ ∗

1 )q �= (S1C̃c
1f−uβ )q,

then we have pkρ∗
Cγ ∗

1 �= S1C̃c
1f−uβ = Dq�

1 Eq�

1 pkeρ Ceγ

1 . Let χρ =
eρ−ρ∗

�
and χγ = eγ −γ ∗

�
. Then Dq

1Eq
1pkχρ Cχγ

1 is an �-th root of
(S1C̃c

1f−uβ )/(pkρ∗
Cγ ∗

1 ) �= 1. This breaks the adaptive root subgroup
assumption since (S1C̃c

1f−uβ )q/(pkρ∗
Cγ ∗

1 )q �= 1.
Case 2. If pkρ∗

Cγ ∗
1 �= S1C̃c

1f−uβ and (pkρ∗
Cγ ∗

1 )q = (S1C̃c
1f−uβ )q, then

S1C̃c
1 = pkρ∗

Cγ ∗
1 f δ′

for some δ′ �= uβ ∈ Zq. Then we have S1C̃c
1f−uβ =

pkρ∗
Cγ ∗

1 f δ′−uβ = Dq�

1 Eq�

1 pkeρ Ceγ

1 . By Lemma 1, write C1 = f v ∏m0
i=1 gαi

i .
Consider the f parts in both sides, we have f v·γ ∗+δ′−uβ = f v·eγ ,
namely v · (γ ∗ − eγ ) = uβ − δ′ mod q. Since 0 < |uβ − δ′| < q and
γ ∗ − eγ = 0 mod q, contradiction happens. Hence, by Corollary 2.1,
pkρ∗

Cγ ∗
1 f uβ = S1C̃c

1 with overwhelming probability.
By rewinding, the extractor obtains a pair of accepting tran-

scripts with (ρ∗, γ ∗, uβ , c) and (s′
ρ , s′

γ , u′
β , c′). The extractor can com-

pute �ρ∗ = ρ∗ − s′
ρ , �γ ∗ = γ ∗ − s′

γ and �uβ
= uβ − u′

β mod q. We

denote ρ = �ρ∗
�c

, γ = �γ ∗
�c and β = �uβ

�c
mod q. Hence we have

C̃�c
1 = (pkρCγ

1 fβ)�c . If C̃1 �= pkρCγ

1 fβ , then pkρ fβ Cγ

1

C̃1
is a non-trivial

element order �c < q which contradicts Corollary 2.2.
Note that our scheme includes a sub-protocol ZKPoKRepS on

input C̃2 w.r.t. bases gq ∈ G \ F. Since ZKPoKRepS is an argument
of knowledge, there exists an extractor to extract the same (γ , ρ)

such that C̃2 = Cγ

2 gρ
q .

Hence the extractor can output (β, γ , ρ) such that C̃1 = Cγ

1 fβpkρ

and C̃2 = Cγ

2 gρ
q . �

Theorem 3.6. The protocol ZKPoKAff is an honest-verifier
statistically zero-knowledge argument of knowledge for
relation RAff in the generic group model.

Proof. The simulator Sim randomly picks a challenge c′ ∈ [0, q − 1]
and a prime �′ ∈ Prime(λ). It picks randomly u′

β ∈ Zq, d′
ρ , d′

γ ∈ [0, B−
1] and e′

ρ , e′
γ ∈ [0, q�′ − 1].

It computes

D′
1 = pkd′

ρ , D′
2 = g

d′
ρ

q , E′
1 = C

d′
γ

2 , E′
2 = C

d′
γ

2

S′
1 = D′

1
q�′

pke′
ρ f u′

β C
e′
γ

1 C̃−c′
1 , S′

2 = D′
2

q�′
g

e′
ρ

q C
e′
γ

2 C̃−c′
2

We argue that the simulated transcript (S′
1, S′

2, c′, u′
β , D′

1, D′
2, e′

ρ , e′
γ , �′)

is indistinguishable from a real transcript (S1, S2, c, uβ , D1, D2, eρ , eγ , �)
between a prover and a verifier. Sim chooses (�′, c′) identically to
the honest verifier. Both uβ and u′

β are uniformly distributed in
Zq. (S′

1, S′
2) is uniquely defined by the other values such that the

verification holds. Next, we compare the simulated transcript
(D′

1, D′
2, E′

1, E′
2, e′

ρ , e′
γ ) and the real transcript (D1, D2, E1, E2, eρ , eγ ).

Similar to the proof of Theorem 4, we know that eρ or eγ has a
statistical distance at most q�/(2B+1) from uniform over [0, q�−1].
This bounds the distance between the real eρ (resp. eγ ) and the
simulated e′

ρ (resp. e′
γ ), which is uniform over [0, q� − 1].

By similar argument in Theorem 2, the statistical distances

of (gdρ

q , g
d′

ρ

q ),(pkdρ , pkd′
ρ ) and (Cdγ

2 , C
d′

γ

2 ) are all at most dist1 =
2λ+1q

B + 2λq|Gq |
2B+3−3q·2λ + |Gq |

B ; the statistical distance of (Cdγ

1 , C
d′

γ

1 ) is at

most dist2 = 2λ+1q
B + 2λq|G|

2B+3−3q·2λ + |G|
B . We have dist1 ≤ 1

2εd+3 if

B ≥ 2εd+2(2λq + 2)|Gq| + 2εd+λ+4q + 3q · 2λ−1 − 3
2 for some distance

parameter εd and dist2 ≤ 1
2εd+3 if B ≥ 2εd+2(2λq + 2)|G| + 2εd+λ+4q +

3q ·2λ−1 − 3
2 for some distance parameter εd. By Fact 3, the distance

between the joint distribution Xρ = (pkdρ , gdρ

q ) and the simulated

distribution Yρ = (pkd′
ρ , g

d′
ρ

q ) is at most 1
2εd+2 ; the distance between

the joint distribution Xγ = (Cdγ

1 , Cdγ

2 ) and the simulated distri-

bution Yγ = (C
d′

γ

1 , C
d′

γ

2 ) is at most 1
2εd+2 . Moreover, we can obtain

that the probability Pr(dρ = z|eρ) or Pr(dγ = z|eγ ) increases by at
most 1

|Y| − q�

2B+1 . The same applies to the variable (pkdρ , gdρ

q )|eρ (resp.

(Cdγ

1 , Cdγ

2 )|eγ ).
We can compare the joint distributions X′

ρ = (pkdρ , gdρ

q , eρ) with

the simulated distribution Y′
ρ = (pkd′

ρ , g
d′

ρ

q , e′
ρ) using Fact 3. Setting

ε1 = 1
|Y| − q�

2B+1 and ε2 = 0, the distance between these joint

distributions is at most 1
2εd+2 + q�

2B+1 + ε1q� = 1
2εd+2 + q2�2

2B+3−3q�
+

q�(1−q�)

2B+1 < 1
2εd+2 + q�

2B−3q�+3 ≤ 1
2εd+1 , where the last equality holds if

B ≥ 2εd+λ+1q+3q ·2λ−1 − 3
2 . Similarly, we have the distance between

the joint distributions X′
γ = (Cdγ

1 , Cdγ

2 , eγ ) and Y′
γ = (C

d′
γ

1 , C
d′

γ

2 , e′
γ ) at

most 1
2εd+1 if B ≥ 2εd+λ+1q + 3q · 2λ−1 − 3

2 . Using Fact 2, we have

the statistical distance between X = (pkdρ , gdρ

q , Cdγ

1 , Cdγ

2 , eγ , eγ ) and

Y = (pkd′
ρ , gq

d′
ρ , C

d′
γ

1 , C
d′

γ

2 , e′
ρ , e′

γ ) at most 1
2εd . Combining the above

requirements on B, we have a simplified requirement that B ≥
2εd+λ+3q2s̃. �

Remarks. The analyses for argument of knowledge for
ZKPoKEnc and ZKPoKAff are similar but they achieve contradic-
tion in Case 2 in different ways. The former utilizes the fact that
in its first verification equation of the last step Dq�

1 pkeρ cancels f
with the assumption pk ∈ Gq. The latter cannot follow the same
method since there is one C1 lying in G \ F involved, in which case
we lead to contraction through analyzing the exponent of f parts
in the verification equation.

3.3.1. ZK Proofs Related to Affine Transformation.
In our proposed threshold ECDSA scheme, we also use some ZK
proofs for relations closely related to the affine transformation of
a CL ciphertext. Details of these ZK proofs are given in A.

3.4. Comparison with ZK Proofs in PKC-2021
Yuen et al. [5] proposed two compact ZK proofs for ZKPoKRepS and
ZKPoKEnc. In the previous section, we further improve these two
protocols, which can be directly plugged into the two threshold
schemes proposed in [5]. We also give a ZK Proof for ZKPoKAff.
We now show the improvement in terms of bandwidth and
running time.

Parameter setting. For computing class group size, according to
[17], each reduced class group represented by (a, b, �) satisfies
that −a < b ≤ a and a <

√|�|/3. Let ||�|| denote the bit length
of �. Then, a and b can be denoted by a � ||�||−1

2 �-bit string and
a � ||�||−1

2 � + 1-bit string (b needs one more bit to represent its
sign). Since � is already stored in the common public key which is
available for every party, we directly use 2×� ||�||−1

2 �+1 to represent
the bit size of one class group element (1827 bits per one class
group element). According to [3], we require ||�|| = 1827 in 128-bit
security level.

Result. We implement our ZK proofs in Rust language using a
MacBook Pro laptop with 16G RAM and Intel Core i5. We use the
Class4 library in Rust. The running time and bandwidth are shown
in Tables 1 and 2. The proof generation is much faster than the
counterparts in [5] for ZKPoKRepS and ZKPoKEnc. The verification
time does not vary much. The ZKPoKAff is relatively costly in
proving but efficient in verification.

4. APPLICATION TO UC
NON-INTERACTIVE, PROACTIVE
THRESHOLD ECDSA
Canetti et al. [13] proposed a UC non-interactive, proactive thresh-
old ECDSA which introduced a global random oracle and an

4 https://github.com/ZenGo-X/class
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Table 1. Comparison on proof size in bits where
λ = 128, ||q|| = 256, ||�|| = 1827.

Protocol [5] This work Change

ZKPoKRepS (n=1) 5865 4038 ⇑ 31.2%
ZKPoKEnc 11 062 7948 ⇑ 33.0%
ZKPoKAff × 11 986 -

enhanced ECDSA assumption. Their implementation involves ZK
proofs in order to validate the information among the interac-
tion. In this section, we generalize the use of ZK proofs in [13]
and proposed the improvement with our newly implemented ZK
proofs. Moreover, we demonstrate the UC property remained in
our modification and show the performance analysis between the
implementation from [13] and ours.

4.1. ZK Proofs in Threshold ECDSA
We generalize the ZK proofs from [13] at a high level as follows.
We transform them into CL instantiations in A and name them
ZKPoKEnc (the same with Algorithm 2), ZKPoKLog, ZKPoKAff-
g and ZKPoKAff-p, which will be used to construct CL-based
bandwidth-efficient threshold ECDSA scheme.

Renc ={(pk ∈ Gq, K ∈ C); (k, ρ ∈ Z) : K = Encpk(k; ρ)}

Rlog ={(pk ∈ Gq, P̂, X̂ ∈ Ĝ, C ∈ C); (x, ρ ∈ Z) :

X̂ = P̂x, C = Encpk(x; ρ)}

Raff-g ={(Y, C, D ∈ C, pk1, pk2 ∈ Gq, X̂ ∈ Ĝ);

(x, y, ρy, ρ ∈ Z) : X̂ = P̂x, Y = Encpk1
(y; ρy),

D = EvalAdd(EvalScal(C, x), Encpk2
(y; ρ)}

Raff-p ={(X, Y, C, D ∈ C, pk1, pk2 ∈ Gq);

(x, y, ρx, ρy, ρ ∈ Z) : X = Encpk1
(x; ρx),

Y = Encpk1
(y; ρy), D = EvalAdd(EvalScal(C, x),

Encpk2
(y; ρ)}

4.2. Construct CL-based Bandwidth-efficient
Threshold ECDSA
We present our CL-based bandwidth-efficient threshold ECDSA,
including key generation, key refreshment, pre-signing and online
signing, respectively, in Tables 3, 4, 5 and 6, where communica-
tion through point-to-point channel and synchronized broadcast
channel are denoted by → and ⇒, respectively. We summarize
the major changes from Canetti’s Paillier-based threshold ECDSA
to our CL-based threshold ECDSA as follows.

• For KeyGen and KeyRefresh, we replace the two proofs for
Rmod (denoted by ZKPoKMod) and one proof Rprm (denoted
by ZKPoKPrm), with one single ZKPoKRepS (n = 1) for each
party.

• For Paillier-related algorithms including key generation
Enc, Dec, EvalAdd and EvalScal are updated with CL encryp-
tion alternatives; all ZK proofs are transformed from Paillier
version to corresponding CL version, as the blue parts shown
in Tables 3, 4 and 5.

• Further, we optimize the complexity of generating and ver-
ifying ZK proofs, We emphasize that, the operations in the

orange box in Key Refresh is required (n − 1)2 times and
the orange box in Pre-signing is required (n − 1) times for
each party. Instead, in our CL setting, they are, respectively,
required by only (n − 1) and 1 times.

4.3. Security Claim
Recap security proof in [13]. We recall first the security analysis
in the Paillier-version non-interactive threshold ECDSA from [13]
following the UC framework [18]. In traditional non-UC (stan-
dalone) security framework, it allows the existence of rewinding
technique to extract adversary’s secrets. On the contrary, UC
framework introduces one more role called environment and the
analyzed protocol is called safe if the environment cannot tell
the differences between an ideal execution and a real execu-
tion. However, this augmented UC framework brings the techni-
cal obstacle of disabling the rewinding technique. But the secu-
rity proof in [13] bypasses this obstacle by defining a generic
ideal threshold signature functionality Ftsig (c.f. fig. 14 of [13]),
instead of an ECDSA functionality. In this way, they well capture
the required proactive security and successfully reintroduce the
rewinding technique which greatly simplifies the security anal-
ysis. They also define another global random oracle functionality
H which is accessible to both real and ideal systems. More-
over, they formalize an enhanced unforgeability of ECDSA which
is used to prove the non-interactive threshold ECDSA protocol
UC-realizes the functionality Ftsig. We note that this enhanced
unforgeability unconditionally holds in generic group model (c.f.
sec 1.2.5, [13]). Equipped with the above arsenals, they proved
by reduction that if their non-interactive threshold ECDSA pro-
tocol cannot UC-realize functionality Ftsig, there exists a PPT
distinguisher R1 who can break Paillier’s semantic security or
a PPT forger R2 who can win the enhanced ECDSA experiment
(c.f. E.1, [13]).

Security of our proposed scheme. The UC security analysis in [13]
is transferrable to our CL setting except for some changes during
simulation. We list below the updates of the five simulators,
two UC-simulators R{1,2} and three non-UC simulators S{1,2,3},
and omit the full proof here. Then, we demonstrate that our
modifications toward [13] do not affect the UC security. Note that
in the following descriptions we omit some indices for simplicity.

• Cancel out ring pederson parameters and its ZKs. Across the
five simulators, we unifiably cancel out every (s, t) parame-
ters and its ZK simulator Sprm since ring pederson commit-
ment is not required in the CL setting.

• Convert encryption from Paillier to CL First, the R1 is
renamed to CL distinguisher. Accordingly, the CL distin-
guisher is parameterized with CL public keys and ciphertexts
instead of the Paillier ones. Second, all the encryption/de-
cryption keys, encryption/decryption algorithms, ciphertexts
across the three non-UC simulators S{1,2,3} are converted
from Paillier setting to CL setting. For example, each (p, q)

is transformed to sk (CL secret key).
• Shift ZK-simulators from Paillier to CL. Across the five simu-

lators, first, redefine the proofs πenc, π log and πaff in CL setting
instead of Paillier setting, equivalently for their ZK simulators
Senc, S log and Saff; second, since we have already replaced all
the Paillier secret key (p, q) to CL secret key sk, the ZK proof
πmod and ZK simulator Smod should be updated to πRepS and
SRepS, respectively.

We emphasize here that our above updates in security analysis
has no affections violating the requirements in analysis of [13], as
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Table 2. Comparison on the running time for both prover and verifier (128-bit security level).

Prover Verifier

[5] This work change [5] This work change

ZKPoKRepS (n=1) 488.7 ms 412.5 ms ⇑ 15.6% 168.6 ms 164.2 ms ⇑ 2.6%
ZKPoKEnc 969.2 ms 684.5 ms ⇑ 29.4% 333.2 ms 324.6 ms ⇑ 2.6%
ZKPoKAff × 1715.2 ms - × 441.9 ms -

Table 3. Key Generation

KeyGen (param)

Pi Round 1 All players {Pj}j�=i

(ski, pki) ←− CL.KeyGen(1λ, crs)

π
RepS
i := ZKPoKRepS(pki; ski : pki = gski

q )

xi
$←− Z/qZ and Qi := xiP

sridi ←− {0, 1}κ ; τi
$←− Z/qZand Ai := τiP

ui ←− {0, 1}κ ; Vi = H(sridi, Qi, Ai, ui) Abort if π
Reps
i fails.

Pi Round 2 All players {Pj}j�=i

Abort if H(sridi, Qi, Ai, ui) �= Vi.

Pi Round 3 All players {Pj}j�=i

Perform (t-n)-VSS share of xi:
pi(X) = ui + ∑t

k=1 ai,kXk mod q

Denote {σi,j := pi(j)}j∈[0,n] and {Vi,k := ai,kP}k∈[t]
σi,j−→

ci := H(Vi, srid) where srid = ⊕jsridj

zi := τi + cixi mod q Abort if σi,j · P �= ∑t
k=0(jk · Vi,j)

or H(sridi, Xi, Ãi, ui) �= Vi

where Ãi = ziP − H(i, srid) · Qi.

Pi Output All players {Pj}j�=i

{σk,i}k are additive shares of xi := ∑
k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.
Output X = ∏

j Xj

Table 4. Key Refresh and Auxiliary Info
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Table 5. Modifications to the Pre-Signing protocol. Note that S = s̃ · 2εd .

Table 6. Signing protocol.

Signing (param)

Pi Round 1 All players {Pj}j�=i

r = R|x-axis

σi = km + rχ
σi−→ σ = ∑

j σj

Erase (R, k, χ). Verify (r, σ) is a valid signature,
return (m, r, σ) if valid, abort
otherwise.

shown in (i) and (ii); and that some assumptions should be tuned
in claims 5.5 and 5.6 in [13] as shown in (iii).

(i) The construction of stand-alone (non-UC) simulators S{1,2,3}

treat each ZK as a module without specifying its inner setting
as in section 5.5 of [13]. Thus, our updates in ZK proofs, sim-
ulators and also encryption schemes do not have material
influence during the simulation.

(ii) The transition from πmod to πRepS keeps the extractability
requirement in the UC simulators R{1,2}; further, generic group

Table 7. Message Sizes in bits under soundness error of 2−80.

Message Type [13] This work

Public key 9216 1827
Ciphertext 6144 3654
ZKPoKRepS (n=1) - 4038
ZKPoKMod 494 752 -
ZKPoKPrm 491 520 -
ZKPoKEnc 19 971 7948
ZKPoKLog 20 227 8204
ZKPoKAff-g 42 244 20 190
ZKPoKAff-p 51 204 29 197

model is required in the extractability analysis of πRepS but
still the enhanced ECDSA assumption unconditionally holds
in generic group model as aforementioned;

(iii) In the output phase of simulator S1, it should fulfill an envi-
ronment secrets extraction and the secrets are the encrypted
plaintexts. This kind of extractability is promised by the
special soundness of their encryption well-formedness
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Table 8. Bandwidth Analysis in bits under n-party setting in
128-bit security level.

Protocol [13] This work

Key generation 256 × n2 + (1497 920 +
256t) × n

256 × n2 + (7401 +
256t) × n

Key refreshment 20 227 × n3 − 34 054 ×
n2 + 1009 955 × n

12 114 × n2 − 5865 × n

Pre-signing 118 024 × n2 − 44 543 × n 64 003×n2−31 571×n

ZK proof. More specifically, it relies on the strong RSA
assumption. Switching to our setting, the special soundness
of our ZKPoKEnc is assured by three assumptions: adaptive
root subgroup assumption, Corollary 2.1 and Corollary 2.2.
Hence, without changing much of the proof sketch of section
5.3.1 of [13], we simply adapt these three assumptions to
replace the original strong RSA assumption, more specifically,
for Lemma 5.4 and Claim 5.5 in [13]. Also, it is trivial to
replace the semantic security of Paillier encryption with
the semantic security with CL encryption, which produces
the noticeable winning probability of a CL distinguisher
R1.

Hence, we conclude the security claim of our new threshold
ECDSA scheme in Theorem 4.1, where we also follow the defi-
nition of proactive, ideal threshold signature functionality Ftsig

which follows the same definition of fig. 14 of [13].

Theorem 4.1. Assuming semantic security of the CL
cryptosystem, adaptive root subgroup assumption,
Corollary 2.1 and Corollary 2.2 and enhanced existential
unforgeability of ECDSA, it holds that the
non-interactive threshold ECDSA modified in this paper
UC-realizes the functionality Ftsig, in the presence of
the global random oracle functionality H.

4.4. Bandwidth Analysis
In this subsection, we analyze the theoretical complexity of our
ZK proofs and modified ECDSA. We compare the communication
bandwidth of our protocol with the one from Canetti et al. [13]
corresponding to the level of security 128, and under soundness
error 2−80.

Zero-knowledge Proofs. We compare the communication
bandwidth of the ZK proofs proposed in [13] and this paper.
We observe that, for the public key and ciphertext, the com-
munication bandwidth is reduced by around 80.2% and 40.5%,
respectively. For the ZK proofs, the communication bandwidth is
improved in the range of 43.0–60.2%. A detailed communication
bandwidth analysis is shown in Table 7.
Components in threshold ECDSA. We compare the communica-

tion bandwidth of the key generation, key refreshment and pre-
signing components in threshold ECDSA. The results are shown
in Table 8 and Fig. 1. As the number of parties increased, the
communication bandwidth of the threshold ECDSA proposed by
Canetti et al. [13] grows much higher than that of ours, thus
the modification from ours saves a large amount of communi-
cation bandwidth. Note that in the picture for key generation,
the two curves seem linear and like a mismatch with Table 8.
This is due to that when n is not large enough, the trend will
be dominated by the coefficient of n instead of the coefficient
of n2.

Figure 1. Bandwidth in 128-bit security level where t is set n − 1.

Table 9. Running time.

(t,n) Protocol KeyGen KeyRefresh PreSign OnlineSign

(1,3) [13] 36.5 s 39.4 s 6.2 s 1.2 ms
our scheme 3.7 s 13.9 s 80.5 s 1.2 ms

(2,4) [13] 54.1 s 62.2 s 11.9 s 1.6 ms
our scheme 5.9 s 26.9 s 155.2 s 1.6 ms

(2,5) [13] 72.1 s 89.9 s 19.7 s 2.1 ms
our scheme 8.4 s 42.7 s 253.8 s 2.1 ms

4.5. Implementation
We implemented both the Paillier-based threshold ECDSA [13]
and our CL-based threshold ECDSA in Rust using a MacBook
Pro laptop with 16G RAM and Intel Core i5. We use the Bitcoin
secp256k1 curve5 and number theory library6 for large integer
operations. Our program is yet to be parallelized and instead, we
linearly execute each party’s operations in each round without
considering the network issue. We choose the (t,n) settings with
(1,3), (2,4) and (2,5) which are the most popular settings in Bitcoin’s
P2SH transactions7 .

We observe that, from Table 9, for the running time, the key
generation is reduced by up to 10 factors and KeyRefresh also
improved by around 50%. But the running time of pre-signing is
10+ times than the Paillier counterpart (parallel computation will
reduce the running time by dividing the party number), which
is the only cost of improving the bandwidth for all phases and
improving the running time in key generation and key refresh-
ment, although it is less important in a non-interactive signing
scenario where we pursue the optimal online signing while can
loosen the computation assumption in pre-signing. We leave
further optimization of the inefficient CL-based pre-signing as
our future work. For online signing, our scheme is the same
with [13].

5. CONCLUSIONS
In this paper, we optimize the existing ZK proofs in CL-based
threshold ECDSA in both proof size and proving time; we pro-
pose a new ZK proof for the affine transformation in CL cipher-
text; finally, we extend these three to devise tailored ZK proofs
to construct the bandwidth-optimal UC secure, non-interactive
and proactive threshold ECDSA, which outperforms its Paillier-
based counterpart in bandwidth of all phases and in running
time in key generation and refreshment, at a cost of a slower
pre-signing.

5 https://github.com/rust-bitcoin/rust-secp256k1
6 https://docs.rs/rust-gmp/0.5.0/gmp/mpz/struct.Mpz.html
7 https://txstats.com/dashboard/db/p2sh-repartition-bytype?orgId=1
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ZK Proofs compatible with UC
Non-interactive Proactive Threshold ECDSA
We give our tailored ZK proofs, extended from our new ZK
proofs, for the Canetti’s UC non-interactive proactive’s threshold
ECDSA in a class group setting, which achieves the bandwidth-
optimal counterpart without compromising its UC security, non-
interacivity and proactive security. For simplicity, we omit the
HVZK analysis for ZKPoKAff-p and ZKPoKAff-g. We emphasize
that the sampling Bound B’s of ZKPoKAff-p and ZKPoKAff-g are
different from other ZK proofs. ZKPoKLog shares the same B with
ZKPoKEnc. We summarize the sampling ranges for each ZK in
Table A1.

Table A1. Sample ranges in different settings.

ZKP B

ZKPoKRepS 2εd+2λnq2 s̃
ZKPoKEnc 2εd+λ+2qs̃
ZKPoKAff 2εd+λ+3q2 s̃
ZKPoKAff-p 2εd+λ+4q(5 + qs̃)
ZKPoKAff-g 2εd+λ+2q(5 + qs̃)
ZKPoKLog 2εd+λ+2qs̃

ZK for Aff-p

Raff-p ={(X1, X2, Y1, Y2, C1, C2, D1, D2, pk1, pk2 ∈ Gq);

(x, y ∈ Zq, ρx, ρy, ρ ∈ [0, S]) : X1 = f xpkρx
1 , X2 = gρx

q ,

Y1 = f ypk
ρy

1 , Y2 = g
ρy
q , D1 = Cx

1f ypkρ

2, D2 = Cx
2gρ

q }

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1265/7188842 by Pokfulam
 U

niv user on 27 April 2024
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ZK for Aff-g

Raff-g ={(Y1, Y2, C1, C2, D1, D2, pk1, pk2 ∈ Gq, X̂ ∈ Ĝ);

(x, y ∈ Zq, ρy, ρ ∈ [0, S]) : X̂ = P̂x, Y1 = f ypk
ρy

1 ,

Y2 = g
ρy
q , D1 = Cx

1 f ypkρ

2, D2 = Cx
2gρ

q }

ZK for log

Rlog ={(P̂, X̂ ∈ Ĝ, C1, C2, pk ∈ Gq); (m ∈ Zq, ρ ∈ [0, S]) :

X̂ = P̂m, C1 = fmpkρ , C2 = gρ
q } D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1265/7188842 by Pokfulam
 U

niv user on 27 April 2024



Corrigendum 
 
In this edition, we have several improper places to update (computation mistake in bandwidth, typos 
in proof and graph). Please refer to the Chapter 4 of the thesis Trustless Digital Signatures in 
Blockchain for an updated correct version of this work. The thesis is accessible in 
https://hub.hku.hk/handle/10722/336617. 
 
We highlight the changes as follows. 
 
1. There is a mistake when measuring the class group element in section 3.4. The size of ∆	should	

be	2339	bits	instead	of	1827	bits	since	it	follows	that	∆	=	q^2	*	∆_K,	where	size	of	∆_K	is	
1827	bits.	Accordingly,	results	in	table	1,	7,	8	and	figure	1	for	bandwidth	analysis	should	
be	updated.	For	the	updates,	please	refer	to	the	parameter	setting	in	section	4.3.4,	table	
4.1,	table	4.9,	table	4.10,	figure	4.1	of	the	thesis. 

2. There	is	misuse	between	x_i	and	u_i,	X_i	and	Q_i	in	KeyGen	algorithm	chart	(table	3).	Refer	
to	section	4.4.2	in	thesis	for	the	updated	charts. 

3. In the proof of Theorem 3.1, the representation of D1/2 is not complete, omitting f^\gamma and 
f_\delta respectively. Refer to Theorem 4.1 in thesis for the updates. 
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