
Address-based Signature
Handong Cui

Department of Computer Science
The University of Hong Kong

Hong Kong
hdcui@cs.hku.hk

Tsz Hon Yuen
Department of Computer Science

The University of Hong Kong
Hong Kong

thyuen@cs.hku.hk

Abstract—In most applications using digital signatures, public
keys are used to verify the signatures. The public keys are
authenticated by a trusted certificate authority. However, this
chain of trust is fragile in the real world. Systems like blockchain
and eXpressive Internet Architecture (XIA) proposed to use the
hash of a public key as an address. Then signatures are verified
against addresses.

In this paper, we first formalize the notion of address-based
signatures to analyze the security of these address-based sys-
tems. We give a strong model which considers the security of
multiple addresses, with respect to attackers who even know the
randomness used by the system developers. The formalization of
security model is important to understand the security of real
world system.

We propose an efficient and secure construction of address-
based signature, which can overcome the existing problems of
address-based ECDSA and Schnorr signatures. Then we give
two generic constructions of address-based signatures. We find
out that these solutions are either not efficient enough (in terms
of signature size and address size) or not secure enough.

Index Terms—Signature, Address, Blockchain

I. INTRODUCTION

In public key infrastructure, a public key is used to verify a
signature. The authenticity of the public key itself is validated
by a digital certificate issued from a trusted Certificate Author-
ity (CA). The public key infrastructure is quite cumbersome
in practice. Current web browsers carry a lot of pre-installed
intermediary certificates issued and signed by CAs. It increases
the risk of a key compromise and it is difficult to manage
which CAs or intermediate CAs to trust. In September 2018,
Google Chrome distrusted millions of certificates issued by
Symantec before December 2017, since Google believed that
Symantec mis-issued SSL certificates. The chain of trust is
difficult to maintain in the real world.

Identity-based cryptography [14] was proposed to deal with
this problem, by using a human recognizable string (such as
email address) as the user identity. For encrypting a message
or verifying a signature, the user identity string is used as the
public key. The shortcoming of identity-based cryptography
is that a trusted authority is needed to generate the user’s
identity-based secret key. It is interesting to see how public key
cryptography can be adapted to a distributed system without
relying on trusted authority.

Expressive Internet Architecture. In 2006, the U.S. National
Science Foundation started a project on future Internet ar-
chitecture. The eXpressive Internet Architecture (XIA) [1],

proposed in 2011, is one of the three projects that enters the
Future Internet Architecture-Next Phase (FIA-NP) in 2014.
XIA pointed out that one of the major problems of today’s
Internet is the lack of built-in security. They extended the self-
certifying identifiers [2] in order to provide intrinsic security
of the future Internet.

XIA proposed the use of the hash of public key for host and
service as an address to provide accountability. To the best
of the authors’ knowledge, they do not specify any signature
scheme. In the XIA prototype released on Github1, they used
1024-bit RSA keys and the address is 160-bit hash output from
the RSA key.

Blockchain Address and Signatures. Blockchain is a dis-
tributed ledger system proposed in 2009 [11], in which there
is no trusted authority. People can generate as many public
keys as they want and can use these keys for transactions. In
most blockchain systems, the information about the public key
is not stored in the blockchain directly. Instead, only the hash
value of the public key (which is usually a 160-bit string) is
used as the address. Transaction is accepted as long as the
signature can be verified with the address.

The idea of address is used because the storage in
blockchain is considered to be expensive. The transaction
fee for each transaction is proportional to the length of the
transaction. Therefore, the address is used to represent the
recipient of a transaction in the blockchain, instead of using
the longer public key.

As a result, an ideal digital signature for blockchain system
requires that the sum of address size and the sum of signature
size is minimal. It is different from classical public key
signatures that only the signature size is considered. In Bitcoin
and Ripple, they explicitly reveal the ECDSA public key along
with the signature. In Ethereum, the public key can be derived
from the ECDSA signature. Therefore, the overall transaction
data size of Ethereum is more compact.

A. Address-based Signatures

The address system used in blockchain and XIA actually
deviates from classical digital signatures. In this paper, we
propose the concept of address-based signature. Address is
defined as an arbitrary string describing the signer, and the
address should be collision resistant between any two signers.

1https://github.com/XIA-Project/xia-core

884

2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

DOI 10.1109/TrustCom50675.2020.00119
/20/$31.00 ©2020 IEEE978-1-6654-0392-4

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

In this paper, we consider that the address is the hash of
the public key. The definitions of the key generation and
signing algorithms of address-based signatures are almost the
same as classical digital signatures. During the verification
of a signature over a message, only the address is given to
the verifier. The verifier can still check the validity of the
signature. This address-based signature is more suitable to
capture the applications in blockchain system or XIA.

Advantages of Address-based Signatures. There are a num-
ber of advantages of using address-based signatures.
• Shorter Address. The most obvious advantage of using

address-based signature is the shorter address as com-
pared to the size of public key. This advantage will
become more significant when we move to high security
level (e.g., using 512-bit ECC) or post-quantum secure
signature scheme (e.g., lattice-based signature usually has
public key size > 1000 bytes) in the future. Shorter
address implies lower transaction fee for blockchain
applications.

• Compatibility. The idea of verifying against address
enables the whole system to use the same address data
structure for different signature schemes. It is useful for
XIA since different hosts may use different signature
schemes. For example, users using ECDSA and Schnorr
signature can use the same 160-bit address data structure.
Signature schemes using 256-bit ECC and 512-bit ECC
can use the same 160-bit address data structure. We only
need a few bits to indicate the signature scheme and the
bit-length used.

The ECDSA used in Ethereum can be viewed as an address-
based signature. We review it in section IV.

B. Our Contributions

There are three main contributions in this paper.

Contribution 1: Formalization of address-based signature
and its security model. In this paper, we propose the concept
of address-based signatures to capture the real world scenario
that address is used to verify a signature, instead of using
the public key directly. The address-based ECDSA signature
is already used in Ethereum but no formal security model is
developed for address-based signature. We believe that it is
beneficial to formalize this notion, since more than USD 250
billion of cryptocurrency (as of July 2020) is protected by the
notion of address-based signature.

We give a formal notion of address-based signature, and
define two security models for it: unforgeability and collision
resistance. In both models, the attacker is allowed to obtain
the randomness used to generate system parameters. It gives
a strong security guarantee by considering the threat from
system developers of a blockchain system, who may include
a trapdoor in the system parameters.

Contribution 2: Constructing a new, compact address-
based signature. In this paper, we propose a compact address-
based signature scheme for cryptocurrency, summarized in
Algorithm 1. It is as efficient as the ECDSA and Schnorr

Algorithm 1: Our Address-based Signature. The secret
key is x, the public key is X = gx and the address is
A = H(X).

1 Function SIGN(x,m)
2 r ←s Zp;
3 R = gr;
4 c = Hzp(R,m);
5 z = r−1(c+ x) mod p;
6 return σ = (R, z);

7 Function
VERIFY(A,m, σ = (R, z))

8 c = Hzp(R,m);
9 X = Rzg−c;

10 if A = H(X) then
11 stop with 1;

12 stop with 0;

Sign Verify
0

50

100

150

200

55.3

113.5

59.2

168.4

58.8

121.9

R
un

ni
ng

Ti
m

e
(µ

s)

Schnorr
ECDSA

Our scheme

Fig. 1. Comparison of running time.

signature, but without their major drawbacks when used in
blockchain. The efficiency comparison is shown in Fig 1.

In terms of security proof, ECDSA is only proved secure
in the generic group model [5] or the non-standard bijective
random oracle model [9]. The security of our scheme is based
on the discrete logarithm assumption in the random oracle
model. In terms of blockchain application, Schnorr signature
is not compatible with Bitcoin Improvement Protocol (BIP)-
32 as shown in [17]. Our scheme is compatible with address
using the BIP 32 non-hardened key derivation. Therefore, our
proposed scheme is more suitable for address-based system
such as blockchain and XIA.

There is also theoretical interest in the security proof of our
construction. In the proof, we show that the unforgeability
of the signature requires the address hash function H to
be always second-preimage resistant. This is a non-trivial
result, since always second-preimage resistance is not implied
by collision resistance as shown in [12]. This result also
demonstrates the importance of formalizing the notion of
address-based signature.2

Contribution 3: Constructing address-based signature
from existing signature schemes. We show that address-
based signature can also be constructed from other classical
digital signatures using generic constructions GC1 in §VII-A

2Practical hash function like SHA256 is likely to be both collision resistant
and always second-preimage resistant. Nevertheless, the security proof shows
that we need these two distinct properties from the hash function. From
the theoretic point of view, it is interesting to see how these two theoretic
properties of hash function can affect two different properties (collision
resistant and unforgeability) of a practical signature scheme.

885

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

Address-based Signature Signature Address Total cost Major drawbacks

ECDSA (SEC standard) (r, s) H(X) 672 bits Malleable, non-standard security proof, repeated computation
in verification.

ECDSA (Used in Ethereum) (r, s, v) H(X) 680 bits Non-standard security proof.
ECDSA + GC 2
(Used in Bitcoin/Ripple) (r, s,X) H(X) 936 bits Malleable, non-standard security proof, longer signature

Schnorr (R, z) H(X) 680 bits Not secure in strong known related-key attack [17]
(e.g., Bitcoin BIP32)

Key-prefix Schnorr + GC 1 (c, z) X 776 bits Longer address
Key-prefix Schnorr + GC 2
(Proposed in Bitcoin BIP) (c, z), X H(X) 936 bits Longer signature

BLS/BB + GC 1 σ X 776 bits Slow verification using pairing, longer address
BLS/BB + GC 2 σ,X H(X) 936 bits Slow verification using pairing, longer signature
Our construction (§V-A) (R, z) H(X) 680 bits -

TABLE I
COMPARISON OF ADDRESS-BASED SIGNATURES. THE TOTAL COMMUNICATION COST IS THE SUM OF ADDRESS AND THE SIGNATURE SIZE. GC STANDS

FOR THE GENERIC CONSTRUCTION IN SECTION VII. X IS THE PUBLIC KEY. DETAILS OF THE SYMBOLS ARE EXPLAINED IN SECTION VII.

and GC2 in §VII-B. We compare the efficiency of these
schemes in Table I. When implemented in secp256k1, the
secret key can be represented by 32 bytes. The compressed
public key can be represented by 33 bytes (32 bytes for
the x coordinate and 1 byte (0x02 or 0x03) for the sign of
the y coordinate). In some cryptocurrencies (e.g., Bitcoin),
the address is appended with a checksum value, but some
cryptocurrencies do not have it (e.g., Ethereum). In Bitcoin,
ECDSA signature is further encoded in DER format. For
fair comparison, we omit the sizes of address checksum and
signature encoding in Table I.

As summarized in Table I, the most efficient schemes
are the address-based ECDSA, Schnorr signature and our
construction. For Schnorr signature, it is known to the Bitcoin
community that Schnorr signature is not compatible with
some Bitcoin Improvement Protocol (BIP), such as BIP32’s
non-hardened derivation. As a result, key-prefixed Schnorr is
preferred in the recent BIP proposal [16]. However, using key-
prefixed Schnorr will result in a 50% increase in signature
size if we keep the old address structure, or a 60% increase
in address size if we keep the old signature structure. The
pairing-based signatures like BLS [4] and BB [3] require a
larger public key. Therefore, our construction is the optimal
solution for address-based signature.

II. BACKGROUNDS

Intractability Assumption. Using the notation in [13], for
a security parameter 1λ, a cyclic group G, its order p and
the generator g are classified as the algebraic structure SI
of the discrete logarithm (DL) problem instance. The DL
assumption holds if there is no probabilistic polynomial time
(PPT) adversary can output x when given X = gx and SI ,
where x is randomly chosen from Zp.

Hash Functions. We review some properties of hash functions
from [12]. We treat a hash function H as a family of functions,
H : K ×M→ Y .

We review the always second-preimage resistance property
as follows. Let m be a number such that {0, 1}m ⊆ M . Let

A be an adversary. Then a hash function family is always
second-preimage resistant if the probability:

max
K∈K

{
Pr

[
M ←R {0, 1}m;M ′ ← A(M) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))

]}
is negligible.

We review the collision resistance property as follows. A
hash function family is collision resistant if the probability:

Pr

[
K ←R K; (M,M ′)← A(K) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))

]
is negligible.

III. SECURITY MODEL

A. Address-based Signature

Address-based signature is quite similar to the identity-
based signature in the sense that a string is used as the “public
key” to verify the signature. The advantage of identity-based
signature is that the string can be something meaningful such
as email address. However, there is a trusted third party to
issue identity-based secret keys. On the other hand, there is
no trusted third party to issue address-based keys to different
users. Therefore, it makes address-based signature suitable for
XIA and blockchain applications.

An address-based signature scheme consists of the following
four algorithms:

1) Setup(1λ): On input a security parameter λ, it outputs
a master public key mpk.

2) KeyGen(mpk): It outputs an address addr, a public key
pk and a secret key sk.

3) Sign(mpk, sk,m): On input a master public key mpk, a
secret key sk and a message m, it outputs a signature σ.

4) Verify(mpk, addr,m, σ): On input a master public key
mpk, an address addr, a message m and a signature σ,
it outputs (1, pk) for valid signature (where pk is the
corresponding public key) and outputs (0,⊥) otherwise.

Threat Model. In the system of address-based signature, there
are three parties:

886

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

• Signer: the one who generates key pairs and signs a
message.

• Verifier: the one who verifies the signature. In the case
of cryptocurrency, it can be the one receiving the money,
or the miners running the consensus algorithms.

• System developer: the one who generates the system
parameters mpk. In real world, the system developers
usually justify their choice of parameters by using pa-
rameters from the standard, or setting parameters as a
hash of some meaningful string.

In this paper, we consider the security of each signer
against other parties in the system. As in the standard un-
forgeability requirement, the attacker can obtain signatures
for some messages from the target signer. We require that
no PPT adversary can forge a signature on a new message.
The second security requirement is collision resistance, which
means that no PPT adversary can output two distinct secret
keys with the same address. In these two security models, we
additionally allow the attacker to obtain all randomness used
by the system developer to generate the system parameters. It
models the attack on unforgeability/collision resistance even
against honest-but-curious system developer.

B. Unforgeability

We define our security model similar to the notion of multi-
user existential unforgeability against chosen message attack
[10]. The original security model in [10] does not consider
whether the system parameters are generated by a trusted third
party or not. In this paper, we take this into consideration and
define trapdoorless multi-user existentially unforgeable under
chosen message attack (TMU-EUF-CMA). In the first step
of this security game, the challenger generates the system
parameters by running Setup(1λ; ρ) with randomness ρ. The
adversary is additionally given ρ in the first step. This is
motivated by the trustless setup assumption used in most
public blockchain.

It is easy to see that Schnorr signature is TMU-EUF-
CMA secure, since the system parameter par only contains
a cyclic group G with prime order p, its generator g and a
cryptographic hash function Hzp. The generation of system
parameters does not involve a trapdoor. On the other hand,
RSA-based signature with common modulus N = pq is not
secure in this model.

The notion of existential unforgeability under chosen mes-
sage attack is defined as the following game between a
challenger and an adversary.

1) The challenger runs mpk ← Setup(1λ; ρ). The chal-
lenger runs (addri, pki, ski) ← KeyGen(mpk) for i ∈
[1, qk]. He stores (addri, pki, ski). The adversary is given
mpk and (addri, pki) for i ∈ [1, qk], as well as the
randomness ρ used to run Setup.

2) The adversary can adaptively issue a sign oracle query
on message mj and pkij , for j ∈ [1, qs]. The challenger
answers by σj ← Sign(mpk, skij ,mj).

3) Finally, the adversary outputs an index i∗ ∈ [1, qk], a
message m∗ and a signature σ∗.

The adversary wins the game if (1, ·) ← Verify(mpk,
addri∗ ,m

∗, σ∗) and (i∗,m∗) 6= (ij ,mj) for all j ∈ [1, qs].

Definition 1. An address-based signature scheme is TMU-
EUF-CMA if no PPT adversary can win the above game with
non-negligible probability, with at most qs queries to the Sign
oracle.

C. Collision Resistance

The second security requirement is the collision resistance
of the address. We require that it is difficult to find two
secret keys which are represented by the same address. The
requirement of collision resistance is also explicitly mentioned
in XIA [1].

The notion of collision resistance is defined as the following
game between a challenger and an adversary.

1) The challenger runs mpk ← Setup(1λ; ρ). The adver-
sary is given mpk, as well as the randomness ρ used to
run Setup.

2) Finally, the adversary outputs signatures σ∗b , messages
m∗b and an address addr∗, for b = 0/1.

The adversary wins the game if (1, pk∗b) ← Verify(mpk,
addr∗, m∗b , σ

∗
b) for b = 0/1 and pk∗0 6= pk∗1.

Definition 2. An address-based signature scheme is collision
resistant if no PPT adversary can win the above game with
non-negligible probability.

IV. ADDRESS-BASED ECDSA SIGNATURE

Some of the classical digital signature schemes allow public
key recovery and can be used as address-based signature
directly. One example is ECDSA [15]. Consider x as a secret
key and g as a generator of a multiplicative ECC group G,
the public key is X = gx. Denote H : G → {0, 1}160 and
Hzp : {0, 1}∗ → Zp as cryptographic hash functions and m
as a message. The address is A = H(X).

The SEC standard proposed a ECDSA scheme with public
key recovery [6]. The verification of the ECDSA signature
does not require the use of public key, at a price of repeating
the verification computation for up to 4 times (about 49.99%
for one time, 49.99% for two times). Ethereum used an
address-based ECDSA signature. They used an extra byte to
store the information about the different cases in verification,
such as using odd or even y-coordinates.

Ethereum used ECDSA as an address-based signature di-
rectly. However, there are some well-known drawbacks of the
ECDSA signature. Firstly, there is no known security proof
of ECDSA in the standard model or in the random oracle
model. The EUF-CMA security of ECDSA is only proven
in the generic group model [5], or in the bijective random
oracle model [9]. Secondly, ECDSA signature is known to be
malleable: if (r, s) is a valid signature from address A, then
(r,−s) is also a valid signature. The ECDSA malleability is
one of the causes of transaction malleability in the Bitcoin
system, and a number of related attacks are found [7]. A
common trick to deal with it is to use the smaller of s and −s
mod p only during the signing phase. Thirdly, as shown in the

887

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

SEC standard [6], the public key recovery process is repeated
since there are four possible choices of address. Therefore,
the computation complexity in verification is 1.5 times higher
on average (since the last two cases are rare). In Ethereum,
they used this address-based ECDSA and they solved the third
issue by having an extra byte of information about the x and
y coordinate of K.

V. COMPACT AND SECURE ADDRESS-BASED SIGNATURE

Since the address-based ECDSA and Schnorr signatures
have their own problems when used in blockchain, we would
like to consider if we can construct a secure and efficient
address-based signature. In this section, we give our construc-
tion and prove the security of our scheme in the random oracle
model. Then we give the construction of our address-based
signature.

A. Our Construction

Our construction can be regarded as the middle ground
between Schnorr signature and ECDSA. We remove the ex-
traction of x-coordinate in ECDSA, which makes ECDSA hard
to have a standard security proof. On the other hand, we have
to prevent the strong known related-key attack [17] in Schnorr
signature, while preserving the public key recovery property
(unlike the key-prefixed Schnorr signature). As a result, we
remove the linear structure of the Schnorr signature z = r+cx
and change it to z = r−1(c + x). The randomness r−1 is
multiplied with the secret key x to prevent the strong known
related-key attack.

Considering this requirement of the address-based system,
the actual signature scheme is as follows.

Setup. On input the system parameter λ, it generates a cyclic
group G of prime order p. with a generator g ∈ G. Suppose
H : G → {0, 1}∗ and Hzp : {0, 1}∗ → Zp are cryptographic
hash functions. It sets mpk = (p,G, g,H,Hzp).

KeyGen. On input mpk, it picks a random x ∈ Zp and
computes X = gx. It outputs the secret key x, the public
key X and the address A = H(X).

Sign. On input mpk, the secret key x and a message m, it
picks a random number r ∈ Zp and computes:

R = gr, c = Hzp(R,m), z = r−1(c+ x) mod p.

It outputs the signature σ = (R, z).

Verify. On input mpk, the address A, a message M and
a signature σ = (R, z), it computes c = Hzp(R,M),
X ′ = Rzg−c and outputs (1, X ′) if A = H(X ′). Otherwise,
it outputs (0,⊥).

Theorem 1. Our address-based signature is collision resistant
if H is a collision resistant hash function.

Theorem 2. Our address-based signature is TMU-EUF-CMA
secure if the DL assumption holds in the random oracle model
and H is an always second-preimage resistant hash function.

Proof. Suppose B is given a DL problem X∗ and SI =
(G, p, g). B tries to solve the DL by using a TMU-EUF-CMA
adversary A.
Setup. B picks cryptographic hash function Hzp and H using
randomness ρ. B prepares an empty list Hzp. B sets mpk =
(p,G, g,H , Hzp). B picks a random index i′ ∈ [1, qk]. B runs
(xi, Xi, Ai) = KeyGen(mpk) for all i ∈ [1, qk] except i′. B
sets Xi′ = X∗ and Ai′ = H(X∗). B sends mpk, (Xi, Ai) for
i ∈ [1, qk] and ρ to the adversary A.
Oracle Query. B answers the oracle queries as follows:
• Sign: On input a message mj and public key Xij , if
ij 6= i′, B returns σ = Sign(mpk, xij ,mj).
If ij = i′, B picks some random z, c ∈ Zp and computes
R = (gcX∗)1/z . B puts (c, (R,m)) in the list Hzp. (If
the value of c is already set in Hzp, B picks another c
and repeats the previous step.) B returns σ = (R, z).

• Hzp: On input (R,m), if (c, (R,m)) is in the list Hzp,
B returns c. Otherwise, B picks a random c ∈ Zp. B puts
(c, (R,m)) in the list Hzp and returns c.

Output. Finally,A outputs an index i∗ ∈ [1, qk], a message m∗

and a signature σ∗ = (R∗, z∗). If i′ 6= i∗, B declares failure
and exits. Otherwise, B can compute c∗ = Hzp(R

∗,m∗) such
that

X ′ = R∗z
∗
g−c

∗
, Ai∗ = H(X ′).

If the always second-preimage resistance property holds for
H , then X ′ = X∗ for the random choice of ρ. Then:

R∗z
∗

= gc
∗
X∗.

B rewinds Hzp to the point that (R∗,m∗) was queried, and
returns a different c′ 6= c∗. B eventually obtains another
forgery (R∗, z′) from A. Therefore, we have

(gc
∗
X∗)1/z∗ = (gc

′
X∗)1/z′ .

It implies X∗z
′−z∗ = gc

′z∗−c∗z′ .
Next, we argue that z∗ 6= z′. Suppose on the contrary z∗ =

z′. Then gc
∗
X∗ = gc

′
X∗. It leads to a contradiction with the

setting that c 6= c′. Therefore we have z∗ 6= z′.
From X∗z

′−z∗ = gc
′z∗−c∗z′ and z∗ 6= z′, we can extract

loggX
∗ = c′z∗−c∗z′

z′−z∗ as the answer to the DL problem
instance.

It is known that the Fiat-Shamir transform has non-
malleability in the random oracle model [8]. Therefore, it is
straightforward that our signature scheme has non-malleability.
Finally, we show the security against strong known relate-key
attack under the security model defined in [17].

Theorem 3. Our address-based signature is Φaff -EUF-CM-
sRKA secure for the class of affine function Φaff if the DL
assumption holds in the random oracle model and H is an
always second-preimage resistant hash function.

Proof. The proof is similar to the proof of TMU-EUF-CMA.
We sketch the differences below. In the setup phase, B samples
a number of random affine functions φk(x) = akx + bk for
some ak, bk ∈R Zp. For the signing oracle query:

888

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

• Sign: On input a message mj , public key Xij and index
k, if ij 6= i′, B returns σ = Sign(mpk, akxij + bk,mj).
If ij = i′, B picks some random z, c ∈ Zp and computes
R = (gc(X∗)akgbk)1/z . B puts (c, (R,m)) in the list
Hzp. B returns σ = (R, z).

The output phase is almost the same.

VI. HASH FUNCTIONS FOR ADDRESS-BASED SIGNATURES

From the security proofs in the previous sections, we
showed that our new address-based signature requires both the
collision resistant property and the always second-preimage
resistant property of the hash function H . Theoretically, these
two properties are not always the same [12]. In practice, there
are a few possible instantiations of H . In this section, we show
that there are some differences when we instantiate the hash
functions differently in Bitcoin and in Ethereum.

In Ethereum, it first computes a keccak256 hash of the
uncompressed X and stores the rightmost 20 bytes. The 20
bytes string is usually expressed as a hexadecimal string for
Ethereum address. Ethereum’s address does not involve any
prefix or key in the computation of the hash function. For
unkeyed hash function, the always second-preimage resistant
property is equivalent to the traditional second-preimage re-
sistant property. The latter is implied by the collision resistant
property [12]. Therefore, only the collision resistant property
is required for the security of address-based signature with
Ethereum’s H function.

In Bitcoin, the public key X = gx can be represented as
a compressed or uncompressed format. One byte of prefix
(0x02/0x03/0x04) is put in front of the public key (0x04
represents using uncompressed X as the public key; 0x02
represents using x coordinate of X and y coordinate is even;
0x03 represents using x coordinate of X and y coordinate is
odd). The resulting 65/33 bytes are hashed by SHA256 first
and then by RIPEMD160 to obtain a 20 bytes string. One
byte of prefix is then added to denote the network ID (e.g.,
0x00 represents Bitcoin main network, 0x6f represents a test
network). It is then appended with 4 bytes of checksum on the
previous 21 bytes. The 25 bytes string is usually expressed as
a base58 string for Bitcoin address. For the case of Bitcoin,
the choice of the prefix representing the type of public key
and the prefix representing the network ID are selected by the
Bitcoin core developers. Therefore the security of address-
based signature with Bitcoin’s H function requires both the
collision resistant property and the always second-preimage
resistant property of H .

From a practical point of view, the function H constructed
from popular hash functions (e.g., SHA256 or keccak256)
should satisfy both the collision resistant property and the
always second-preimage resistant property. However, from a
theoretical point of view, the Bitcoin setting requires a slightly
stronger assumption.

Algorithm 2: Generic Construction 1

1 Function SETUP(1λ)
2 pick H as the encoding function for the public key

space and H−1 is the reverse of H;
3 return mpk = (1λ, H,H−1);

4 Function KEYGEN(mpk)
5 (pk, sk)← S.KeyGen(1λ);
6 A = H(pk);
7 return (sk, addr = A);

8 Function SIGN(mpk, sk,m)
9 return σ ← S.Sign(sk,m);

10 Function VERIFY(mpk, addr = A,m, σ)
11 pk = H−1(A);
12 if 1← S.Verify(pk,m, σ) then
13 stop with (1, pk);

14 stop with (0,⊥);

VII. GENERIC CONSTRUCTION OF ADDRESS-BASED
SIGNATURES

In this section, we give two generic construction of address-
based signatures from standard signatures. Then we analyze
the signature size of these schemes when instantiation from
other signatures, such as EdDSA, BLS and BB signatures.

A. Generic Construction 1

A trivial way to construct address-based signature is to
treat the encoding of the public key as address. Suppose
(S.KeyGen, S.Sign, S.Verify) is a EUF-CMA secure signa-
ture scheme, in the multi-user setting. Therefore, the address
function H is a simple encoding function. The first generic
construction is given in Algorithm 2. For the security, the
collision resistance of this generic address-based signature is
trivial: it holds if H is collision resistant. The TMU-EUF-
CMA security of this generic address-based signature is based
on the TMU-EUF-CMA security of the underlying signature
scheme. The major disadvantage of this scheme is that the size
of the address is at least as long as the public key.

B. Generic Construction 2

Another generic construction of address-based signature is
to send the classical signature σc and together with the signer
public key pk to the verifier. The address is the hash of pk. The
verifier checks the validity of (1) the classical signature σc with
respect to pk and (2) pk with respect to the signer’s address.
Therefore, the actual data to be stored by a blockchain includes
the signer’s signature (σc, pk) and the recipient’s address. The
second generic construction is given in Algorithm 3. For the
security, the collision resistance of the second generic address-
based signature is trivial: it holds if H is collision resistant.
The TMU-EUF-CMA security of this generic address-based
signature is based on the TMU-EUF-CMA security of the
underlying signature scheme, and also the always second-
preimage resistant property of H . The proof is similar to the

889

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Generic Construction 2

1 Function SETUP(1λ)
2 pick hash function H for the public key space;
3 return mpk = (1λ, H);

4 Function KEYGEN(mpk)
5 (pk, sk′)← S.KeyGen(1λ);
6 A = H(pk);
7 return (sk = (pk, sk′), addr = A);

8 Function SIGN(mpk, sk = (pk, sk′),m)
9 σc ← S.Sign(sk′,m);

10 return σ = (σc, pk);

11 Function VERIFY(mpk, addr = A,m, σ = (σc, pk))
12 if 1← S.Verify(pk,m, σc) and A = H(pk) then
13 stop with (1, pk);

14 stop with (0,⊥);

proof of our construction. The major drawback of this scheme
is that the public key pk gives an extra overhead and induces
higher transaction fee.

The case of Bitcoin. In Bitcoin, the most common type of
transaction is P2PKH. In a P2PKH transaction, the signature
script contains an secp256k1 signature (Sig) and a full public
key (PubKey), and it is concatenated to the pubkey script as:

<Sig> <PubKey> OP DUP OP HASH160 <PubkeyHash>
OP EQUALVERIFY OP CHECKSIG

Therefore, the spender’s public key (PubKey) is sent as a
part of the input signature script 3. It is the same as our generic
construction 2.

C. Candidate Signature Schemes and their Drawbacks

We review some popular digital signature schemes (other
than Schnorr and ECDSA) which can be used with the generic
constructions. It helps us to evaluate the overall performance
of all the combinations with generic constructions.

The key-prefixed variant of Schnorr signature does not allow
public key recovery as in the standard Schnorr signatures,
since the computation of c = H(R,M,X) requires the knowl-
edge of the public key X . The same holds for the EdDSA sig-
nature. The key-prefixed variant of Schnorr signature is shown
in Algorithm 4. Without public key recovery, the key-prefixed
variant of Schnorr signature has a larger communication cost
no matter combining with generic construction 1 and 2, as
shown in Table I.

There are a few short signature schemes based on pairings.
Denote ê : G1 × G2 → GT as a pairing, and G1,G2,GT
are cyclic groups of prime order p. Denote g1 and g2 as the
generator of G1 and G2 respectively. Consider x as a secret
key, the public key is X = gx1 . Denote HG2 : {0, 1}∗ → G2

as a cryptographic hash function. For the BLS signature [4]

3https://developer.bitcoin.org/devguide/transactions.html

Algorithm 4: Key-prefix Schnorr Signature

1 Function SIGN(x,m)
2 r ←s Zp;
3 R = gr;
4 X = gx;
5 c = Hzp(R,m,X);
6 z = r + cx mod p;
7 return σ = (c, z);

8 Function
VERIFY(X,m, σ = (c, z))

9 R = gzX−c;
10 if c = Hzp(R,m,X)

then
11 stop with 1;

12 stop with 0;

and the BB signature [3], the verification of both signatures
requires the public key.

We can define G2 as an ECC group of 256-bit order p and
obtains a compact signature of 256 bits only. However, the
public key will then be defined as an ECC group of 512-bit
order and the public key size will become 512 bits. As shown
in Table I, the larger size of public key in BLS/BB offsets the
saving in the signature size, no matter combining with generic
construction 1 and 2.

VIII. EFFICIENCY ANALYSIS

We implement a number of different classical and address-
based signatures by Rust in a MacBook with Intel Core i5
1.4GHz, 16GB RAM. The results are the median running time
for running > 300 times. For ECC-based schemes, they all use
the same curve secp256k1, which is the curve used in Bitcoin.
For pairing-based scheme, they use the BN curves in the bn
library in Rust.

Classical Signatures. We compare them with our scheme
and the classical signatures in Fig. 1. Our scheme is more
efficient than ECDSA in both signing and verification. Schnorr
signature is the most efficient in terms of signing, since no
modular inverse computation is involved. The verification time
of our scheme is similar to that of Schnorr signature. As
shown in Table I, there are some disadvantages of using the
Schnorr signature or ECDSA. Therefore, our scheme is a better
alternative as compared with the Schnorr signature or ECDSA.

Address-based Signatures. We implemented a few address-
based signatures based on our generic constructions. The
comparison with our scheme is shown in Fig. 2. We also
include the address-based Schnorr signature (given in the full
version of the paper) for comparison. Generally speaking,
the computational performance of our scheme is similar to
the family of Schnorr signature. In particular, the ECDSA
following the SEC standard for public kye recovery is slower
because of the repetition in the verification process.

The schemes constructed from BB and BLS signatures are
much slower and hence we do not include them in the figure.
The running time for BB signature is 2083 µs and 12503 µs
for signing and verification, respectively. The running time
for BLS signature is 4610 µs and 13433 µs for signing
and verification, respectively. The address-based version (by
applying GC1 or GC2) of BB and BLS signatures are slightly

890

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

Sign Verify
0

100

200

300

62.5

315

59.2

170.8

55.4

124.1

55.8

125.3

56

122.4

58.8

121.9

R
un

ni
ng

Ti
m

e
(µ

s)

ECDSA(SEC standard)
ECDSA+GC2

Address-based Schnorr
Key-prefix Schnorr+GC1
Key-prefix Schnorr+GC2

Our scheme

Fig. 2. Comparison of running time of address-based signature.

slower. Hence, they are at least 30 times slower than other
schemes in signing and 40 times slower in verification.

Advantages over existing CA approach. In the existing
Internet architecture, a trusted certificate authority (CA) is
used to issue certificates to websites for secure SSL/TLS
connection. The certificate binds the address of the website
with its public key. There are real world attacks that malicious
CAs or intermediate CAs issue certificates to hackers. The
chain of trust problem is difficult to eradicate in the current
Internet architecture. By using the hash of public key in XIA,
we can have intrinsic security without relying on trusted third
party issuing certificates.

From the efficiency point of view, the overhead of using
certificate with standard signature is large. A typical X.509
certificate is around 2-4 Kb, which is much larger than a single
signature (≈ 512 bits for ECDSA/Schnorr signature). By using
address-based signature in XIA, we can save a lot of overhead
regarding certificates.

IX. CONCLUSION

We propose the notion of address-based signature to capture
the systems that use a short address to authenticate users.
Systems like XIA and blockchain use the hash of public key
as the address. We formalize the security models for address-
based signature. We analyze a number of constructions, such
as an address-based signature from Schnorr signature and
two generic constructions. We propose a new address-based
signature in this paper, which is better than the above schemes
in terms of security or total output size (i.e., signature and
address size).

ACKNOWLEDGMENT

The second author is supported by the HKU Project
#201910159277.

REFERENCES

[1] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu,
A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste,
“Xia: An architecture for an evolvable and trustworthy internet,” in
HotNets-X. ACM, 2011, pp. 2:1–2:6.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable internet protocol (aip),” in ACM SIG-
COMM 2008, V. Bahl, D. Wetherall, S. Savage, and I. Stoica, Eds.
ACM, 2008, pp. 339–350.

[3] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
EUROCRYPT 2004, ser. Lecture Notes in Computer Science, C. Cachin
and J. Camenisch, Eds., vol. 3027. Springer, 2004, pp. 56–73.

[4] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in ASIACRYPT 2001, ser. Lecture Notes in Computer Science,
C. Boyd, Ed., vol. 2248. Springer, 2001, pp. 514–532.

[5] D. R. L. Brown, “Generic groups, collision resistance, and ECDSA,”
Des. Codes Cryptography, vol. 35, no. 1, pp. 119–152, 2005.

[6] ——, “Standards for efficient cryptography. sec 1: Elliptic curve cryp-
tography,” 2009.

[7] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and
mtgox,” in ESORICS 2014, ser. Lecture Notes in Computer Science,
M. Kutylowski and J. Vaidya, Eds., vol. 8713. Springer, 2014, pp.
313–326.

[8] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi, “On the non-
malleability of the fiat-shamir transform,” in INDOCRYPT 2012, ser.
Lecture Notes in Computer Science, S. D. Galbraith and M. Nandi,
Eds., vol. 7668. Springer, 2012, pp. 60–79.

[9] M. Fersch, E. Kiltz, and B. Poettering, “On the provable security of
(EC)DSA signatures,” in CCS 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 1651–
1662.

[10] E. Kiltz, D. Masny, and J. Pan, “Optimal security proofs for signatures
from identification schemes,” in CRYPTO 2016, ser. Lecture Notes in
Computer Science, M. Robshaw and J. Katz, Eds., vol. 9815. Springer,
2016, pp. 33–61.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[12] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance,” in FSE 2004, ser.
Lecture Notes in Computer Science, B. K. Roy and W. Meier, Eds., vol.
3017. Springer, 2004, pp. 371–388.

[13] A. Sadeghi and M. Steiner, “Assumptions related to discrete logarithms:
Why subtleties make a real difference,” in EUROCRYPT 2001, ser.
Lecture Notes in Computer Science, B. Pfitzmann, Ed., vol. 2045.
Springer, 2001, pp. 244–261.

[14] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
CRYPTO ’84, ser. Lecture Notes in Computer Science, G. R. Blakley
and D. Chaum, Eds., vol. 196. Springer, 1984, pp. 47–53.

[15] A. Vanstone, “Responses to NIST’s proposa,” Communications of the
ACM, vol. 35, pp. 50–52, 1992.

[16] P. Wuille, “bip-schnorr,” 2018, https://github.com/sipa/bips/blob/bip-
schnorr/bip-schnorr.mediawiki.

[17] T. H. Yuen and S. Yiu, “Strong known related-key attacks and the
security of ECDSA,” in NSS 2019, ser. Lecture Notes in Computer
Science, J. K. Liu and X. Huang, Eds., vol. 11928. Springer, 2019, pp.
130–145.

891

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 05,2021 at 17:36:51 UTC from IEEE Xplore. Restrictions apply.

