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Abstract. Multi-signatures enable a group of t signers to sign a mes-
sage jointly and obtain a single signature. Multi-signatures help validat-
ing blockchain transactions, such as transactions with multiple inputs or
transactions from multisig addresses. However, multi-signatures schemes
are always realised naively in most blockchain systems by directly con-
catenating t ECDSA signatures.

In this paper, we give the first multi-signature scheme for ECDSA.
Technically, we design a new ephemeral group public key for the set of
signers and introduce an interactive signing protocol to output a single
ECDSA signature. The signature can be validated by the ephemeral
group public key. Then, we instantiate the ECDSA multi-signature
scheme with class group, for which we design a secret exchanging mech-
anism that ensures the hiding content is well-constructed. Moreover, our
scheme is able to identify the malicious party in the signing phase and
help to minimize unnecessary resource consumption. This ECDSA multi-
signatures can be used in blockchain to reduce the transaction cost and
provide accountability for signers and backward compatibility with exist-
ing ECDSA addresses.
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1 Introduction

1.1 Motivation

Multi-signatures [16] have been widely used in different scenarios in the
blockchain. This cryptographic primitive allows any group S of parties to jointly
sign a message and produce a signature, for which verifiers are convinced that
each group member S participated in the signing. It can also be used to divide
up responsibility for possession of signing keys among multiple players and avoid
a single point of failure. There are two major uses of the functionality of multi-
signatures. The first use case is formatting a transaction with multiple inputs
relative to different addresses. The owner of each input can sign on all of the
outputs in this transaction1 and present a signature for this input. In Bitcoin,
1 This is the default setting in Bitcoin for the signature hash, called SIGHASH ALL.
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signatures for each input are concatenated. Protocols, such as Taproot, Coin-
Join, and PayJoin2, use multiple inputs and outputs transactions to improve
the privacy of Bitcoin transactions. The second use case is the multisig address
in Bitcoin (and some other blockchain), which contains n public keys. A trans-
action is valid when there are t valid ECDSA signatures attached relative to
public keys among the key list. Each ECDSA signature is verified against one
corresponding public key, and these t signers are accountable for generating this
multi-signature accordingly.

The efficiency of the naive approach for multi-signatures currently used in
Bitcoin is extremely poor. We need k signatures for a transaction with k inputs,
or t signatures for a multisig account with a threshold t. Let us consider a
transaction with two inputs and two outputs. For the first use case (P2PKH),
the transaction size is 374 bytes, and two ECDSA signatures account for 39%
(144 bytes) in it. For the second use case (P2SH 2-of-3 multi-signature), the
transaction size is 668 bytes, and four ECDSA signatures account for 43% (288
bytes) in it. Therefore, it is important to design a cryptographic solution to
reduce the signature size and lower the transaction cost.

1.2 Contribution

We design a new ECDSA multi-signature scheme by introducing the concept of
ephemeral group public key for a group of signers S. Furthermore, it is integrated
with the signing protocol of threshold ECDSA in [15]. The ephemeral group
public key is defined during the interactive signing and is different for each
signing instance. Our new scheme is significantly different from existing schemes
(e.g., no group public key for [3], or one static group public key for each S
[2,4,5,18,19]).

We recall that, in ECDSA, the secret key is x and the public key is Y = xG
where G is the group generator. To sign a message m, the signer picks a random
k, computes the x-coordinate of R = k−1G as r and calculates s = k(H(m)+rx)
for some hash function H. The signature is (r, s).

A Strawman Protocol. When there are t parties with their keys (xi, Yi), a
simple multi-signature is setting the group public key as Y =

∑
i Yi. However,

this strawman protocol is not secure. For example, an adversary can set Y2 =
−Y1 + x2G, where Y1 is the public key of an honest party. Then group key
becomes Y = Y1 + Y2 = x2G. Hence the adversary can generate a signature
using x2 only. This attack is known as the rogue public key attack.

Designing the Group Public Key. In order to deal with the rogue public
key attack, the pairing-based multi-signatures [5] and the Schnorr-based multi-
signatures [19] defined the group public key as Y =

∑
aiYi where ai = H1(S, Yi)3.

2 Taproot: https://en.bitcoin.it/wiki/BIP 0341. CoinJoin: https://coinjoin.io.
PayJoin: https://en.bitcoin.it/wiki/PayJoin.

3 The function H1 is defined in this way for the ease of presentation in the security
proof. In practice, we can simply set ai = H1(i, r, S, m) for all i.

https://en.bitcoin.it/wiki/BIP_0341
https://coinjoin.io
https://en.bitcoin.it/wiki/PayJoin
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Table 1. Comparison of signatures using multiple secret keys.

# SK # PK Size Accountability Keygen

Threshold signature t 1 O(1) No Involve n parties

Threshold ring signature t n O(log n) No No interaction

Bitcoin native multi-signatures t t O(t) Yes No interaction

Multi-signatures t t O(1) Yes No interaction

This static group public key is fixed for all signatures signed by the group of
signers S. However, this structure cannot be applied to ECDSA multi-signatures
because of the security proof. We instead design a new key structure such that
the ephemeral group public key is different for each signature (r, s):

Y =
∑

aiYi, where (a1|| . . . ||at) = H(r,S,m).

In the security proof, we show that the unforgeability is reduced to the
unforgeability of the standard ECDSA signature with a public key Ŷ .

1.3 Related Work

Threshold ECDSA and Threshold Ring Signatures. In threshold signa-
tures [11], a signing key is distributed among n parties, and a message can be
signed only by a sufficiently large subgroup (Table 1). There are three main dif-
ferences between threshold signatures and multi-signatures. Firstly, threshold
signatures are verified by one public key, while multi-signatures are verified by a
set of keys. Secondly, an interactive key generation protocol is needed for thresh-
old signatures, making it hard to cover existing keys and generate new keys.
Thirdly, anonymity is a property of threshold signatures while accountability is
only offered by multi-signatures. The property of anonymity or accountability
may be good for different applications.

Threshold ring signature [6] differs from threshold signature as the group
G can be dynamically formed, and there is no interactive setup phase. The
drawback of threshold ring signatures is that the verification involves all n public
keys in G, and the state-of-the-art signature size is O(log n).

Multi-signatures. There are two approaches to construct multi-signatures.
One is naively implemented by concatenating |S| signatures signed by S signing
keys. Alternatively, researchers designed cryptographic algorithms to compress
these |S| signatures into a single one, such as Schnorr-based multi-signatures
[3,19,20] and pairing-based multi-signatures [4,5,18]. Multi-signatures with a
predefined key range G such that S ⊂ G is also named Accountable-Subgroup
Multi-signatures (ASM) [20]. The accountability means that the subgroup S of
actual signers is known to the verifiers.
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Recent researches on Schnorr follow the paper [19] known as MuSig. MuSig
has been proved to be insecure in [13], which states that there is no OMDL
reduction to the MuSig. Later in Crypto 2021, other multi-signatures were pro-
posed [1,21]. The recent attractive Schnorr multi-signatures results could not
be adapted to ECDSA setting directly due to the complexity of the inversion
computation.

An ECDSA-based multi-signature scheme is proposed in [17]. Their scheme
relies on a trusted group manager to generate the ECDSA signature from t − 1
parties. Moreover, the secret keys of the t−1 parties are all derived by the group
manager. Apparently, it is not secure in the security model given by [19]. It is
also not secure against the rogue public key attack. Konstantinos et al. tried
to do signature compression in 2021 [10] but their scheme only compresses t
signatures into (t + 1)/2 and reached a relatively large signature size.

As an ECDSA multi-signature, our scheme requires no trusted party and the
signature requires only the same size as the standard ECDSA. Consequently,
this scheme shows superiority in functionality and the optimal signature size.
Compared to Schnorr multi-signatures, it has better compatibility with current-
used ECDSA key pairs in most blockchain systems.

1.4 Paper Organization

This paper is organized as the following. Section 2 shows notations and the multi-
signature primitive. Section 3 introduces a modified multiplicative-to-additive
scheme. Section 4 presents the generic multi-signature scheme and the secu-
rity proof. Section 5 shows a scheme instance, which utilizes the Castagnos-
Laguillaumie encryption. Section 6 shows the implementation of the previous
instance with Rust and the bandwidth analysis. Section 7 shows details of how
our scheme interacts with the Bitcoin system. Section 8 draws some conclusions.

2 Preliminaries

We define notations and the multi-signature primitive in this section. Other
building components are listed in Appendix A.

Notation x←$ S is uniformly sampling an element x from the set S and
[n] denotes the set {1, . . . , n}. PPT stands for probabilistic polynomial time
and negl(n) is a negligible function on n. GECC = (G, G, q) is the ECC group
generated by G with order q.

For the definition of multi-signature, we consider that given in [19], where
multi-signature is a tuple of four PPT algorithms (Setup,KeyGen,Sign,Verify):

– Setup(1λ) → params: it generates system parameters from the security param-
eter.

– KeyGen(params) → (sk, pk): it is the key generation protocol which, on input
parameters, outputs a pair of keys (pk, sk) where pk is the public key and sk
is the secret one.
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– Sign(params, {sk1, . . . , skt},S = {pk1, . . . , pkt} ,m) → σ/⊥: it is an interactive
protocol. Parties keep their ski secret and work with others in S to sign a
message m. The protocol outputs either a signature or ⊥.

– Verify(params, S = {pk1, . . . , pkt} ,m, σ) → {0, 1}: it checks whether the sig-
nature σ is valid or not.

Correctness. For all messages m, if σ ← Sign(params, {sk1, . . . , skt},S = {pk1, . . . ,
pkt},m) where ski is the secret key corresponding to the public key pki for i ∈ [t],
then 1 ← Verify(params,S,m, σ).

Security model. We use the game-based security definition for multi-signatures
[19]. The security game involves one honest party, and all other parties are
corrupted by an adversary A. After calling the signing oracle on inputs of the
form (mi,Si) and getting back valid signatures σi, the adversary A wins the
game by outputting a valid signature σ involving the public key of the honest
party. A formal definition is given below.
1. The system setups based on the security parameters params ← Setup(1λ).
2. The honest party generates a key pair (sk∗, pk∗) ← KeyGen(params) and the

adversary A receives pk∗ as input.
3. For any adversary-specified message m and public-key set S = {pk1, . . . , pkt}

containing pk∗, the honest party runs Sign(params, sk∗,S,m) interactively
with A and works as the signing oracle for A. It could be abort when wrong
messages discovered.

4. Finally, A returns a message m∗, a public key set S∗ and a signature σ∗ such
that the tuple (m∗,S∗) has not been queried previously. A wins the game if
pk∗ ∈ S∗ and the signature is valid, i.e. Verify(params,S∗,m∗, σ∗) = 1.

A multi-signature scheme is said to be unforgeable if no PPT adversary wins the
game with non-negligible probability.

3 Multiplicative-to-Additive Share Conversion Protocol

Multiplicative-to-additive (MtA) protocol [14] was introduced as a building block
for threshold ECDSA. The MtA protocol involves two parties {P1, P2} having
messages a ∈ Zp and b ∈ Zp as their private input respectively. The protocol
turns a multiplicative result ab mod q to an additive result α+β mod q, where
P1 and P2 outputs α and β respectively.

3.1 Definition

Generic MtA Protocol. The original MtA scheme [14] is constructed with
the Paillier encryption, and it requires a range proof. We give a 3 round generic
MtA protocol, abstracted from the construction in [7]. This generic protocol relies
on any additive homomorphic encryption (Setup,KeyGen,Enc,Dec,EvalSum,
EvalScal) with a message space equal to Zq

4.
4 If the message space of the additive homomorphic encryption is larger than q (e.g.,

Paillier encryption), then an extra zero-knowledge range proof is needed for all cipher-
texts, to ensure that α = ab − β in Step 2 is still within the message space.
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Setup Phase. For preset system parameters params ← Setup(1λ), P1 generates
keys by running (ek, dk) ← KeyGen(params).

Conversion Phase

1. P1 encrypts a and generates a zero-knowledge (ZK) proof for it.
– P1 computes the encryption cA = Encek(a; ρ) using a randomness ρ.
– P1 creates a zero-knowledge (ZK) proof πA, relative to the relation REnc,

that cA is well-formed, where REnc = {(cA, ek) : (a, ρ)|cA = Encek(a; ρ)}.
– P1 sends cA and πA to P2.

2. P2 manipulates cA to the ciphertext of α = ab − β mod q, where β is the
randomness.

– P2 picks a random β in Zq.
– P2 computes cB = EvalSumek(EvalScalek(cA, b),Encek(−β; ρ′)).
– P2 gives the ZK proof πB , relative to relation RB, that cB is calculated

from (b, β) and is consistent with H = bG where G is the ECC generator.

RB =

{
(H, G, cA, cB , ek) : (b, β, ρ′)| H = bG ∧ cB =

EvalSumek(EvalScalek(cA, b), Encek(−β, ρ′))

}

– P2 sends cB and πB to P1.
3. P1 checks πB and then computes α = Decdk(cB).

MtAwc Protocol. The standard MtA protocol does not include the underlined
steps. If we further want to check b in cB is consistent with value H, these steps
are retained and the protocol is named as MtAwc (Multiplicative-to-additive
with check). The MtA(wc) ptotocol could be proved secure even without any ZK
proof as shown in [14]. Both MtA and MtAwc are used in our multi-signature.

4 Multi-signatures for ECDSA

In this section, we give a new ECDSA multi-signature scheme. In the naive
approach of concatenating t ECDSA signatures, all parties can determine who
is not signing correctly. Hence, we choose to build our ECDSA multi-signatures
upon the interactive signing protocol with identifiable abort in [15]. Moreover,
the new proposed ZK proof technique is detailed in Appendix C.

4.1 Construction

We denote a non-malleable equivocable commitment scheme a tuple of 5 algo-
rithms (KeyGene,Come,Decome,KeyGen′

e,Equive) and a trapdoor commitment
scheme with efficient ZK proof by (KeyGenz,Comz,Decomz,KeyGen′

z,TComz,
TDecomz).

Our protocol contains 4 algorithms (Setup,KeyGen,Sign,Verify).
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– Setup(1λ) → params: On security parameter λ, this algorithm generates an
ECC group GECC = (G, G, q). It chooses hash functions H : {0, 1}∗ → Zq, and
H1 : {0, 1}∗ → {0, 1}∗. It runs pke ← KeyGene(1λ) and pkz ← KeyGenz(1λ).
It outputs params = (G, G, q,H,H1, pke, pkz).

– KeyGen(params) → (sk, pk): Each party picks a random secret key xi ←$Zq

and generates its own public key as Y = xG. Each party additionally runs
the setup phase of the MtA protocol. This algorithm will finally output the
key pair for the current party (x, Y ). The key generation is identical to the
standard ECDSA.

– Sign(params, {sk1, . . . , skt},S = {pk1, . . . , pkt} ,m) → σ/⊥: On input a group
of public keys S of size t and a message m, player Pi with secret key xi generate
and share its MtA public key, then runs the following steps interactively.

• Phase 1. Each player Pi picks ki, γi ←$Zq. All players broadcast their
commitment Ci to γiG, where (Ci,Di) ← Come(pke, γiG).

• Phase 2. For convenience, we define the quantities k =
∑

i∈[t] ki, γ =
∑

i∈[t] γi. As a result kγ =
∑

i,j∈[t] kiγj mod q. Each pair of players Pi

and Pj runs MtA together for ki and γj and respectively receives back
the result αij with βij , such that kiγj = αij + βij mod q. Upon receiving
αij and βji, Pi constructs δi = kiγi +

∑
i�=j αij +

∑
i�=j βji mod q.

• Phase 3. All parties broadcast their own δi and reconstruct δ =
∑

i∈[t] δi =
∑

i,j∈[t] kiγj mod q.
• Phase 4. Each party Pi broadcasts the decommitment Di. Pi obtains

γjG = Decome(pke, Cj ,Dj) for all j �= i and constructs R =
δ−1(

∑
i∈[t] γiG) = (kγ)−1(

∑
i∈[t] γiG) = k−1G and gets r as the x-

coordinate of R.
• Phase 5. Each party broadcasts R̄i = kiR and gives a consistency proof πki

between R̄i and Enc(ki) which is the first message sent in MtA protocol
in Phase 2. The protocol aborts if the following check fails

G =
∑

i∈[t]

R̄i. (1)

• Phase 6. All players compute (a1|| . . . ||at) = H1(r,S,m), in which ai

stands for the masks of all parties’ public keys. The group public key
is denoted as Y =

∑
Yi∈S aiYi. Consequently, the corresponding secret

key is x =
∑

i∈[t] aixi, and it could not be controlled by any single party.
As a result, k

∑
i∈[t] aixi =

∑
i,j∈[t] ki(ajxj) mod q.

Each pair of players Pi and Pj runs MtAwc together for ki and ajxj , with
the public value B = ajYj . The return values are respectively marked as
μij for Pi and νij for Pj . Hence ki(ajxj) = μij + νij mod q.
Upon receiving μij and νji, Pi constructs σi = kiaixi+

∑
i�=j μij+

∑
i�=j νji

mod q
• Phase 7. All parties broadcast Ti, where (Ti, ·) ← Comz(pkz, σi), with a

zero-knowledge proof πTi
of σi.
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Table 2. Identify abortion

Phase Failure Detecting adversary

2 MtA Detect directly

4 Decommitment Detect directly

5 R̄i consistency Detect directly

5 Equation (1) a. Pi publishes ki, γi, αij and βij

b. All compute δ′
i and check δi = δ′

i

6 MtAwc Detect directly

7 Ti consistency Detect directly

8 Si consistency Detect directly

8 Equation (2) a. Pi publishes ki and μij

b. Pj computes
σiG = kiaixiG +

∑
i�=j μijG +

∑
i�=j νjiG

c. Pi prove σiG and Si consistent

9 σ invalid Detect by checking siR = H(m)R̄i + rSi

• Phase 8. Each party gives the ZK proof πσi
on the consistency between

Ti in Phase 7 and the newly generated value Si = σiR. Upon receiving
all Si, parties aborts when

Y �=
∑

i∈[t]

Si. (2)

• Phase 9. All parties broadcast si = kiH(m) + σir and reconstruct s as
s =

∑
i∈[t] si. The protocol aborts if (r, s) is not a valid ECDSA signature

for the message m and the public key y.
– Verify(params, S = {pk1, . . . , pkt} ,m, σ) → {0, 1}: The algorithm takes as

inputs the public keys of signers as S = {Yi}, the message m and the signature
(r, s). The verification is done in two steps.

• Generate ephemeral group public key. Compute (a1|| . . . ||at) = H1(r,S,m)
and Y =

∑
i∈[t] aiYi.

• Verify ECDSA signature. Verify σ = (r, s) using Y , by computing R′ =
H(m) · s−1G + rs−1Y and checking if the x-coordinate of R′ mod q is r.

Note: Steps with underlining are optional. With these steps, one is able to deter-
mine which party did not collaborated properly by referring to Table 2, which
uses the technique given by [15]. Otherwise, the protocol will give anonymous
abort. We could prevent intentionally anonymous aborting by identifying the
malicious party.

4.2 Security Proof

Theorem 1. Our ECDSA multi-signature is unforgeable in the random oracle
model if the standard ECDSA is unforgeable.
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Proof. In the bird’s eyes, we prove the standard ECDSA is forgeable with non-
negligible probability if our multi-signature is threaten by an adversary A with
non-negligible advantage ε. The forger F internally invokes adversary A for and
tries to break the standard ECDSA scheme with the power it.

Without loss of generality, the proof assumes only 1 honest party, named P1

corresponding to public key pk1, and other parties {Pi}i>1 are all corrupted. We
assume the adversary to be a rushing adversary, which means corrupted parties
always send their messages after the honest party in each round.

Simulation of Setup. The simulator S picks GECC and runs key generation
(pke, tke) ← KeyGen′

e(1
λ) and (pkz, tkz) ← KeyGen′

z(1
λ) honestly.

Simulation of KeyGen. The key generation procedure needs to embed the stan-
dard ECDSA public key p̂k = Ŷ into the multi-signature scheme. The simulator
sets the public key for P1, i.e. the simulated party, to Y1 = Ŷ .

Simulation of H and H1. S forwards whatever the standard ECDSA hash func-
tion returns for H and simulates H1 as a normal random oracle query.

Simulation of Sign. For signing on message m, S firstly queries the ECDSA
instance with a random message m̂ ←$Zq and gets back the signature (r̂, ŝ).

They are expected to fulfill the equation R̂ = H(m̂)ŝ−1G + r̂ŝ−1Ŷ where r̂
is the x-coordinate of R̂. Denote Δ = H(m̂) − H(m). S picks random numbers
d1, d2 ∈ Zq such that:

(ŝ/d2)(d2R̂ + d1d2/ŝG) = H(m̂)G + r̂Ŷ + d1G = H(m)G + r̂Y1 + (d1 + Δ)G.

Now suppose R′ = d2R̂ + d1d2/ŝG and its x-coordinate as r′, and denote s′ =
ŝ/d2. Then we have:

s′(R′) = H(m)G + r′(r̂/r′Y1 + (d1 + Δ)/r′G).

(r′, s′) is a valid ECDSA signature on a message m and the corresponding group
public key is r̂/r′Y1 + (d1 + Δ)/r′G. To form such a group public key, we set
a1 = r̂/r′ with

∑
j>1 ajxj = (d1+Δ)/r′ in Phase 6 by the random oracle model.

The interaction messages will be given on how to simulate the real protocol
with the previous p̂k instance.

– Phase 1. P1 runs the protocol and broadcasts C1 as required. All other players
also broadcast the commitment Ci for γiG.

– Phase 2. S interactively runs MtA with other parties using the MtA encryp-
tion keys as the following.

• Initiator for MtA with k1 and γj . S runs correctly for P1 using k1. S extracts
Pj ’s value γj and β1j and computes α1j = k1γj − β1j mod q.

• Respondent for MtA with kj and γ1. S runs correctly for P1 using γ1. S
extracts Pj ’s value kj and computes αj1 = kjγ1 − βj1 mod q using its
own share βj1.

– Phase 3. S broadcasts δ1 according to the scheme and receives back δi for
i > 1. S reconstructs δ =

∑
i∈[t] δi.
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– Phase 4a. Party Pi reveals Di to decommit γiG. S computes R =
δ−1(

∑
i∈[t] γiG).

S checks whether the published values are consistent. Using the value ki

extracted in MtA, S can also validate whether
∑

i∈[t] kiR = G. We say that an
execution is fail-1 if this checking does not passed. If it is fail-1, S runs Phase 5
of the protocol as required using k1 and one of the adversary’s ZK proofs will
fail and the protocol aborts. If it is not fail-1, then:

– Phase 4b. S rewinds A to the decommitment step and computes Γ1 = δR′ −∑
j>1 γjG using γj extracted from Phase 2. Then S runs D′

1 ← Equive(pke,
tke, C1, Γ1). Then S reveals D′

1 as the decommitment instead.
All parties can compute R′ = δ−1(Γ1 +

∑
j>1 γjG) and get r′ as the x-

coordinate of R′.
– Phase 5. S computes R̄1 = G − ∑

j>1 kj(R′) using the extracted kj . S simu-
lates the consistency proof and outputs R̄1.

– Phase 6. All players compute (a1|| . . . ||at) = H1(r′,S,m).
S interactively runs MtAwc with other parties using the MtAwc encryption
keys as the following.

• Initiator for MtAwc with k1 and ajxj . S runs correctly for P1 using k1. S
extracts xj and ν1j from πB and computes μ1j = k1(ajxj) − ν1j mod q.

• Respondent for MtAwc with kj and a1x1. S does not have sk1 = x1 of P1.
S just randomly picks x̃1 ←$Zq and interacts with Pi as if it is x1.

Now S has already obtained the values x2, . . . , xt. S rewinds H1(r′, S,m)
and sets a1 = r̂/r′ and a2 such that

∑
j>1 ajxj = (d1 + Δ)/r′. S sets new

(a1||a2|| . . .) as the output of H1(r′,S,m). We first consider the distribution of a2.
Since a3, . . . , an are randomly chosen from Zp, a2 itself is uniformly distributed
from Zp. The values of all ai satisfy the relation r̂/a1 = (d1 + Δ)/

∑
j>1 ajxj .

The relation is hidden by S’s random choice of d1 and Δ.
The value a1 is calculated from r̂ (the x-coordinate of R̂ generated for a

random message m̂) and r′ (the x-coordinate of R′, calculated from the random
number d1, d2). Assume that the division of the two x-coordinates is uniformly
distributed in Zp, then a1 is also uniformly distributed from Zp. Hence rewinding
will succeed with non-negligible probability.

We remark that S cannot get x1 so it will never get the complete σ1 by itself.
S can only compute another value: σA =

∑
i,j>1 kiajxj +

∑
i>1 μi1 +

∑
i>1 ν1i

mod q using the values extracted from MtAwc.

– Phase 7. S computes (T1, auxT1) ← TComz(pkz, tkz) and uses a simulator of
the ZK proof to generate πT1 . S broadcasts T1 and πT1 .

S can detect if the values published by the adversary are consistent. Using
the extractor of πTi

, S can extract σi and check if σA =
∑

i>1 σi. We say that
an execution is fail-2 if this checking is incorrect.

If it is fail-2, then in Phase 8, S sets S1 = (k1a1x̃1 +
∑

j>1 μ1j +
∑

j>1 νj1)R′,
simulates a consistency proof using the simulator of the ZK proof, and outputs
S1. At least one of the adversary’s ZK proofs will fail and the protocol will abort.

If it is not fail-2, then:
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– Phase 8. S computes S1 = Y − ∑
j>1 σiR

′. S simulates a consistency proof
using the simulator of the ZK proof and outputs S1.

– Phase 9. As the simulator S already knew ki, aixi for all i > 1, it could
compute sA =

∑
i>1 si = H(m)

∑
i>1 ki + σAr, and outputs s1 = s′ − sA.

Attacking Standard ECDSA. In the final step of the security game, A is required
to present a valid signature (r∗, s∗) on a message m∗ such that the honest party’s
public key Y1 is inside the public key set S∗ = (y∗

1 , . . . , y
∗
t∗). WLOG, suppose

Y ∗
1 = Y1. Since the signature is valid, we have (a∗

1|| . . . ||a∗
t∗) = H1(r∗,S∗,m∗),

Y ∗ =
∑

i∈[t∗] a
∗
i Y

∗
i ,

s∗(R∗) = H(m∗)G + r∗Y ∗, (3)

and the x-coordinate of R∗ mod q is r∗.
S rewinds A to the query of H1(r∗,S∗,m∗) and returns another fresh random

(ã1
∗||ã2

∗|| . . . ||ãt∗ ∗) instead. Now A returns the signature (r∗, s̃∗), and

s̃∗(R∗) = H(m∗)G + r∗Ỹ ∗. (4)

By dividing Eq. (3) and (4), we have:

(s∗ − s̃∗)kG = (s∗ − s̃∗)(R∗) = r∗(a∗
i − ãi

∗)
∑

Yi = r∗((a∗
1 − ã1

∗)Y1 +
∑
i>1

(a∗
i − ãi

∗)xiG)

Hence S can extract the discrete logarithm of Y1 i.e. x1 from the final equa-
tion, which helps itself to generate a valid signature for the underlying standard
ECDSA. By the random choice of m̂ in the signing oracle query, m∗ is different
from all existing m̂ with an overwhelming probability.

Analysis. The differences between the real and the simulated views can be listed
as the following. In Phase 2, the MtA protocol the values ci = Enceki(ki) are
published. In the real protocol R =

∑
i kiG and in the simulated protocol we have

R∗ instead. The views are indistinguishable as the encryption scheme secure is
IND-CPA secure. In Phase 4b of the simulated protocol, the decommitment D′

1

is returned. By the non-malleability property of the equivocable commitment,
it is indistinguishable from the real decommitment D1. By the zero-knowledge
property of the ZK proofs, the simulation of Phase 5 and 8 are correct. In Phase
6, a2 is set to

∑
j>1 ajxj = (d1 + Δ)/r′. It is uniformly distributed in Zq by

the random choice of d1 ∈ Zq. Also, a1 is set to r̂/r′. Note that r̂ is related to
ŝ = s′d2, which is uniformly distributed in Zp by the random choice of d2 ∈ Zq.

5 Instantiating with Class Group

We use the additive homomorphic encryption introduced by Castagnos and
Laguillaumie [9] defined on a group with hard subgroup membership (HSM).
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5.1 Hard Subgroup Membership Group

HSM Group. It is an abstract group introduced in [5] and named as HSM
for the hard subgroup membership assumption [22], which constructs a sub-
group where the discrete logarithm (DL) is easy. The generation algorithm
takes security parameter 1λ as input and it outputs the group as GHSM =
(G,Gq,F, g, gq, f, s̃, q). Specifically, the primary group is (G, ·) generated by g,
in which the real order q · ŝ is unknown but we can determine the prime factor q
with s̃ as the upper bound of ŝ. The subgroup (F, ·) with generator f and order q
could be determined. And the subgroup G

q of order ŝ could be generated by gq.
Apparently, we have G = G

q × F. The DL problem in the subgroup F is easy to
solve by a PPT algorithm Solve without any trapdoor. Given the group descrip-
tion GHSM = (G,Gq,F, g, gq, f, s̃, q) and input y = fx, the algorithm computes
discrete logarithm x ← SolveGHSM(y) in polynomial time.

HSM Group from Class Group. The HSM group could by instantiated by
class groups of imaginary quadratic order. The GGenHSM first picks a random
prime q̃ such that qq̃ ≡ 1 (mod 4) and (q/q̃) = −1. For fundamental discriminant
ΔK = −qq̃ and non-maximal order of discriminant Δq = q2ΔK , class group
G̃ = Cl(Δq) orders h(Δq) = q ·h(ΔK) where h(ΔK) is the order of Cl(ΔK). Let
I be the ideal lying above small prime r and φ−1

q be the Algorithm 1 in [8]. The
generators f and gq for the subgroup F = 〈f〉 and G

q = 〈gq〉 can be computed
by gq = [φ−1

q (I2)]q and f = [(q2, q)]. Accordingly, g = f · gq generates G = 〈g〉.
The algorithm outputs GHSM = (G,Gq,F, g, gq, f, s̃, q).

5.2 CL Encryption for HSM Group

We review the additive homomorphic encryption raised by Castagnos and Laguil-
laumie [9], in which message space is a cyclic group with prime order q.

– Setup(1λ) → params: it calls group generation algorithm GGenHSM described
previously, then outputs system parameters as params = (G,Gq,F, g, gq, f, s̃,
q). Moreover, we define the statistical distance εd with constant S = s̃ · 2εd .

– KeyGen(params) → (ek, dk): it picks dk ←$ [0, S] and sets public key ek = gdk
q .

– Encek(m) → C: it picks random number in ρ←$ [0, S]. It composes the cipher-
text C = (C1, C2) where C1 = fmekρ and C2 = gρ

q .
– Decdk(C) → m: it computes M = C1/Cdk

2 and calls Solve for m ←
SolveGHSM(M).

– EvalSumek(C,C ′) → Ĉ: it computes the addition by Ĉ = (C1C
′
1, C2C

′
2) for

C = (C1, C2) and C ′ = (C ′
1, C

′
2).

– EvalScalek(C, s) → C ′: it scales the message with the scalar s by computing
C ′ = (Cs

1 , C
s
2) for inputted ciphertext C = (C1, C2).

5.3 ZK Proof with CL Encryption

Instantiating the MtA protocol with CL encryption, the relation REnc turns to be
{(m, ρ)|pk ∈ G

q, ρ ∈ [0, S] : C1 = fmpkρ ∧ C2 = gρ
q}. And the relation RB turns
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to be {(H,G, cA, cB , ek) : (b, β, ρ) : H = bG ∧ C1 = Ĉ1
b
pkρf−β ∧ C2 = Ĉ2

b
gρ

q}
where G is the ECC generator. Consequently, the ZK proof for REnc follows
immediately the Algorithm 5 in [22]. And we give the ZK protocol for RB and
its security analysis in Appendix C where the relation is formally named RAffwc.

Table 3. Bandwidth (bytes) and running time (ms) of each party for a t-party signing

Phase Sent size Receive size Running time

1 32 32 (t − 1) 0.00t + 0.20

2a 4899 4899 (t − 1) 2397.24t + 1832.19

2b 5292 (t − 1) 5292 (t − 1) 588.15t − 2.81

3 32 32 (t − 1) 0.01t + 0.00

4 64 64 (t − 1) 0.03t + 0.37

5 4049 4049 (t − 1) 2749.42t + 1548.67

6 5356 (t − 1) 5356 (t − 1) 584.92t + 5.08

7 128 128 (t − 1) 0.54t + 0.80

8 160 160 (t − 1) 0.92t + 0.70

9 32 32 (t − 1) 0.25t + 0.49

Total 10648t + 9396 20044t − 20044 6321.48t + 3385.70

Fig. 1. Total running time of each party for a t-party signing

6 Implementation

We implement the multi-signature with Rust language5 relying on a modified
class group and the related curve library6 Our implementation targets at 128-bit
security and picks the SHA-256 hash function, the Secp256k1 ECC curve and

5 https://github.com/multisig-ecdsa/multisig-ecdsa.
6 https://github.com/ZenGo-X/class and https://github.com/ZenGo-X/curv.

https://github.com/multisig-ecdsa/multisig-ecdsa
https://github.com/ZenGo-X/class
https://github.com/ZenGo-X/curv
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a class group with ||ΔK || = 3392 [12] accordingly. The message size and band-
width requirement analysis are given theoretically, and all broadcast messages
are consider as sending it once (Fig. 1 and Table 3). Benchmark is performed on
an AMD Ryzen 7 5800H @3.20 GHz computer with 8 GB RAM.

7 Applications in Blockchain

Nowadays, blockchain plays an increasingly essential role among decentralized
cryptocurrencies and many of them rely on the ECDSA signatures. In Bitcoin,
a flexible way to check the ownership is adopted, which is known as the Bitcoin
script. But the Bitcoin script is not Turing-complete and prevents our scheme
to work fully native. We discusses how to adapt our scheme to the Bitcoin here.

Advantages for Using ECDSA Multi-signatures. (1) The signature size
is minimized in our scheme and could be extremely bandwidth efficient. (2)
Compared to the Schnoor-based or pairing-based multi-signatures, our ECDSA
multi-signatures could better fit into the current blockchains. (3) Compared to
the threshold ECDSA, our scheme does not require interactive key generation.

Construction of t-of-n Multi-signature. In the multisig address in Bitcoin,
an address can be associated with a set of n public keys G and a threshold value
t ≤ n. Any set of t signers S can authorize a transaction on behalf of G.

From the current method of forming group public key in our ECDSA multi-
signature, we could also construct a m-of-n multi-signature. The idea is to replace
the key aggregation protocol in Phase 6 to (a1|| . . . ||at) = H1(r,S, G,m).

Combining with Mixing Service. Currently, cryptocurrencies utilizes mix-
ing services to make transaction anonymous but these services always takes a
high transaction fee. With our ECDSA multi-signature scheme, users could col-
laborate by themselves and form a mixing transaction with a single ECDSA
signature. Moreover, users don’t need to generate auxiliary information when
signing the message, because we require nothing other than the original keys.

8 Conclusion

In this paper, we give the first multi-signatures for ECDSA by designing a novel
ephemeral group public key for the set of signers and using a generic MtA pro-
tocol for signing. This scheme can identify the malicious party and is adaptable
to the class group, which minimizes the communication cost maximally. As it
only produces a single signature, this scheme can be used in blockchain to save
transaction cost with the accountability for signers and backward-compatibility
with existing addresses.
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A Definition for Building Blocks

A.1 ECDSA

ECDSA is a variant of DSA scheme over elliptic curve. It contains a tuple of 4
algorithms (Setup,KeyGen,Sign,Verify). Setup(1λ) → params generates parame-
ters and calls GGenECC = (G, G, q) and picks a hash function H : {0, 1}∗ → Zq. It
returns params = (G, G, q,H). KeyGen(params) → (sk, pk) takes security param-
eter params as input and returns a secret key sk = x←$Zq with a public key
pk = xG. Sign(sk,m) → σ computes R = k−1G and takes the x coordinate
of R mod q as r. It computes s = k(H(m) + xr) mod q and returns signature
σ = (r, s). Verify(pk, σ) → b outputs the verification result b ∈ {0, 1} according
to whether R′ = H(m) · s−1G + rs−1pk and the x coordinate of R′ mod q is r.

A.2 Additive Homomorphic Encryption

An additive homomorphic encryption allows users to compute the sum of two
message in ciphertext. It contains (Setup,KeyGen,Enc,Dec,EvalSum,EvalScal).
Setup(1λ) → params takes security parameters and outputs the system param-
eter params. KeyGen(params) → (ek, dk) computes an encryption key and a
decryption key from the system parameters. Encek(m) → C gets the encryption
of a message m under the encryption key ek as the ciphertext C. Decdk(C) → m
recovers the plaintext m from the decryption key dk. EvalSumek(C,C ′) → Ĉ
evaluates the ciphertext Ĉ = Encek(a + b) for C = Encek(a) and C ′ = Encek(b).
EvalScalek(C, s) → C ′ scales C = Encek(a) to C ′ = Encek(s · a).

The security of the additive homomorphic encryption follows the standard
definition of indistinguishability against chosen plaintext attack (IND-CPA).

A.3 Trapdoor Commitment

A commitment scheme contains a algorithms tuple as (KeyGen,Com,Decom).
KeyGen(1λ) → pk generates a public key pk. Com(pk,M) → (C,D) takes the
public key pk with a message M then outputs the commitment string C and
decommitment string D. Decom(pk, C,D) → {M,⊥} takes the public key pk,
the commitment string C, the decommitment string D as input and outputs M
if it succeeds and ⊥ otherwise.

A commitment scheme is considered secure if it fulfills the correctness, hiding
and binding properties. For correctness, it requires that for all messages M and
pk ← KeyGen(1λ), then M ← Decom(pk,Com(pk,M)). Hiding means that every
message M1 and M2 and pk ← KeyGen(1λ), Com(pk,M1) and Com(pk,M2) is
statistically indistinguishable. The binding property holds if adversary A wins
the game with probability Pr[A wins binding game] ≤ negl(λ).
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Trapdoor Commitment with Efficient ZK Proof. A commitment scheme
has the additional algorithms (KeyGen′,TCom,TDecom) fulfilling the follow-
ing. KeyGen′(1λ) → (pk, tk) generates a public key pk and a trapdoor
tk. TCom(pk, tk) → (C, aux) gives commitment C and auxiliary informa-
tion aux such that TDecom could open it with any message specified.
TDecom(C, aux,M) → D give out the decommitment D by using aux.

The additional algorithm is required to be trapdoorness. We say a commit-
ment scheme fulfilling the trapdoorness property if for all messages M , the fol-
lowing distributions: {(pk,M,C,D) : pk ← KeyGen(1λ), (C,D) ← Com(pk,M)}
and {(pk,M,C,D) : (pk, tk) ← KeyGen′(1λ), (C, aux) ← TCom(pk, tk);D ←
TDecom(C, aux,M)} are computationally indistinguishable.

Non-malleable Equivocable Commitment Scheme. The equivocable com-
mitment scheme additionally contains KeyGen′ and Equiv. KeyGen′(1λ) →
(pk, tk) generates a public key pk and a trapdoor tk. Equiv(pk, tk, C,M ′) →
D′ generates decommitment string D′ using trapdoor tk such that
Decom(pk, C,D′) = M ′.

The additional algorithm is required to be equivocable and non-malleable. A
commitment scheme is called for equivocable if for all messages M,M ′, (pk, tk) ←
KeyGen′(1λ), (C,D) ← Com(pk,M) and D′ ← Equiv(pk, tk, C, M ′), then M ′ ←
Decom(pk, C,D′). Non-malleable means that no adversary A could generate C ′

related to C such that the decommitment of C ′ is computed from M .

B Trapdoor Commitments and Its ZK Proofs

We instantiate the trapdoor commitment Comz as the Pedersen commitment
Com(pk,m) → (C,D) for C = mG + rH and D = (m, r). The ZK proof in
Phase 5 could be instantiated directly following the Algorithm 6 of [22]. The ZK
proofs in Phase 7 and 8 follow the ZK proof in Sect. 3.3 of [15].

C Zero-Knowledge Proof for MtA(wc)

We give an informal description of assumptions used in HSM group here and
refer to [22] for the complete definition. These hard assumptions are defined
on prime number q > 2λ and HSM group GHSM = (G,Gq,F, g, gq, f, s̃, q) for
GHSM ← GGenHSM(1λ). If we denote H as a generator in the ECC group with
prime order q, then

RAffwc =

{
(pk, C1, C2, C̃1, C̃2);

(γ, β, ρ)

∣
∣
∣
∣
∣

pk, C2 ∈ Gq, C1 ∈ G \ F, γβ ∈ Zq, ρ ∈ [0, S] :

C̃1 = Cγ
1 fβpkρ ∧ C̃2 = Cγ

2 gρ
q ∧ H ′ = γH

}

.
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We have 2 important facts in HSM group. The first one if Adaptive root subgroup
hardness. Given q and HSM group GHSM, it’s hard to find u� = w and wq �= 1 for
specific � ← Primes(λ). The other one is Non-trivial order hardness, which states
that given q and GHSM, it’s hard to find h �= 1 ∈ G such that hd = 1 and d < q.

Theorem 2. The protocol ZKPoKAffwc is an argument of knowledge in the
generic group model.

Proof. We rewind the adversary on fresh challenges � so that each accepting tran-
script outputs an (Q1, Q2, R1, R2, P1, rρ, rγ , �). Recall that we have C2 ∈ Gq.
By the PoKRepS protocol in [22], with overwhelming probability there exists
ρ∗, γ∗ ∈ Z s.t. ρ∗ = rρ mod � and γ∗ = rγ mod �, and gρ∗

q Cγ∗
2 = S2C̃

c
2. Since

S2C̃
c
2 = (D2E2)qg

eρ
q C

eγ

2 , it implies ρ∗ = eρ mod q and γ∗ = eγ mod q. Consid-
ering 2 cases, pkρ∗

Cγ∗
1 fuβ = S1C̃

c
1 is at overwhelming probability.

Next we consider the rewinding of c. The extractor obtains a pair of accept-
ing transcripts with (ρ∗, γ∗, uβ , c) and (ρ′, γ′, u′

β , c′). The extractor can compute
Δρ = ρ∗−ρ′, Δγ = γ∗−γ′ and Δuβ

= uβ−u′
β mod q. We denote ρ = Δρ

Δc
, γ = Δγ

Δc

and β =
Δuβ

Δc
mod q. Hence we have C̃Δc

1 = (pkρCγ
1 fβ)Δc . If C̃1 �= pkρCγ

1 fβ ,

then pkρfβCγ
1

C̃1
is a non-trivial element of order Δc < q which contradicts with the

non-trivial element and its order in the generic group model.
As our scheme includes a sub-protocol ZKPoKRepS on input C̃2 w.r.t. bases

gq ∈ G \ F . Since ZKPoKRepS is an argument of knowledge, there exists an
extractor to extract the same (γ, ρ) such that C̃2 = Cγ

2 gρ
q . Similar argument

applies to H. There exists an extractor to extract the sameγ such that H ′ = γH.
Hence the extractor can output (β, γ, ρ) such that C̃1 = Cγ

1 fβpkρ, C̃2 = Cγ
2 gρ

q

and H ′ = γH. �
Theorem 3. The protocol ZKPoKAffwc is an honest-verifier statistically zero-
knowledge argument of knowledge for relation RAffwc in the generic group model.

Proof. The simulator Sim randomly picks a challenge c′ ∈ [0, q − 1] and a prime
�′ ∈ Prime(λ). It picks a random u′

β ∈ Zq, q′
ρ, q

′
γ ∈ [0, B−1] and r′

ρ, r
′
γ ∈ [0, �′−1].

It finds d′
ρ, d

′
γ ∈ Z and e′

ρ, e
′
γ ∈ [0, q−1] such that d′

ρq+e′
ρ = q′

ρ�
′+r′

ρ, d′
γq+

e′
γ = q′

γ�′ + r′
γ .

It computes:

D′
1 = pkd′

ρ , D′
2 = g

d′
ρ

q , E′
1 = C

d′
γ

1 , E′
2 = C

d′
γ

2 ,

Q′
1 = pkq′

ρ , Q′
2 = g

q′
ρ

q , R′
1 = C

q′
γ

1 , R′
2 = C

q′
γ

2 , P ′
1 = q′

γH,

S′
1 = (Q′

1R
′
1)

�′
pkr′

ρC
r′

γ

1 fu′
β C̃−c′

1 , S′
2 = (Q′

2R
′
2)

�′
g

r′
ρ

q C
r′

γ

2 C̃−c′
2 ,

S′
3= �′P ′

1 + r′
γH + −c′H ′.
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We argue that The simulated transcript is indistinguishable from a real one
(S1, S2, S3, c, uβ ,D1,D2, E1, E2, eρ, �, Q1, Q2, R1, R2, P1, rρ, rγ) between a prover
and a verifier. Sim chooses (�′, c′) identically to the honest verifier. Both uβ and
u′

β are uniformly distributed in Zq. (S′
1, S

′
2, S

′
3,D

′
1,D

′
2, E

′
1, E

′
2, e

′
ρ, e

′
γ) is uniquely

defined by the other values such that the verification holds.
We compare the simulated transcript (Q′

1, Q
′
2, R

′
1, R

′
2, P

′
1, r

′
ρ, r

′
γ) and the

real transcript (Q1, Q2, R1, R2, P1, rρ, rγ). We need to prove that, in the
real protocol, independent of � and c, the either rρ or rγ has a negligi-
ble statistical distance from the uniform distribution over [0, � − 1] and each
one of pkqρ , g

qρ
q , C

qγ

1 , C
qγ

2 , qγH has negligible statistical from uniform over
Gk = 〈pk〉, Gq, G1 = 〈C1〉, G2 = 〈C2〉, 〈h〉 respectively. In addition, each of
Q1, Q2, R1, R2, P1, rρ, rγ are independent from others. Then, the simulator pro-
duces statistically indistinguishable transcripts. The complete proof is as follows.

Consider fixed values of c, ρ and �. In the real protocol, the prover computes
uρ = cρ + sρ where sρ is uniform in [−B,B] and sets rρ = uρ mod �. By Fact
1, the value of uρ is distributed uniformly over a range of 2B + 1 consecutive
integers, thus rρ has a statistical distance at most �/(2B + 1) from uniform over
[0, � − 1]. This bounds the distance between the real rρ and the simulated r′

ρ,
which is uniform over [0, � − 1]. Similarly, �/(2B + 1) also bounds the distance
between rγ and r′

γ

Next, g
qρ
q is statistically indistinguishable from uniform in Gq. By the triangle

inequality, the statistical distance of qρ mod |Gq| from uniform is at most 2λ+1

B +
2λ−1|Gq|
B+1−2λ . We consider the joint distribution of (pkqρ , g

qρ
q ) and rρ. Consider the

conditional distribution of qρ|rρ. Note that qρ = z if (sρ − rρ)/� = z. We repeat
a similar argument as above for bounding the distribution of qρ from uniform.
For each possible value of z, there always exists a unique value of sρ such that⌊ sρ

�

⌋
= z and sρ = 0 mod �, except possibly at the two endpoints E1, E2 of the

range of qρ. When rρ disqualifies the two points E1 and E2, then each of the
remaining points z /∈ {E1, E2} still have equal probability mass, and thus the
probability Pr(qρ = z|rρ) increases by at most 1

|Y | − �
2B+1 , which also applies to

the variable (pkqρ , g
qρ
q )|rρ. Similarly, the probability Pr(qγ = z|rγ) increases by

at most 1
|Y | − �

2B+1 , which also applies to the variable (pkqγ , g
qγ
q , hqγ )|rγ .

We can compare the joint distributions X ′
ρ = (pkqρ , g

qρ
q , rρ) to the simulated

distribution Y ′
ρ = (pkq′

ρ , g
q′

ρ
q , r′

ρ) using Fact 3.
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Algorithm 1: Protocol ZKPoKAffwc for the relation RAff(wc)

Param: GHSM ← GGenHSM,q(1
λ), B = 2εd+λ+3qs̃, where εd = 80.

Input: C1, C2, C̃1, C̃2, pk ∈ Gq.
Witness: ρ ∈ [0, S], β ∈ Zq, γ ∈ Zq, where S = s̃ · 2εd .

1 Prover chooses sρ, sγ
$←− [−B, B], sβ

$←− Zq and computes:

S1 = C
sγ

1 fsβpksρ , S2 = C
sγ

2 g
sρ
q , S3 = hsγ .

Prover sends (S1, S2, S3) to the verifier.

2 Verifier sends c
$←− [0, q − 1] and 


$←− Primes(λ) to the prover.
3 Prover computes:

uβ = sβ + cβ mod q, uρ = sρ + cρ, uγ = sγ + cγ.

Prover finds dρ ∈ Z and eρ, eγ ∈ [0, q − 1] s.t. uρ = dρq + eρ and uγ = dγq + eγ .
Prover computes:

D1 = pkdρ , D2 = g
dρ
q , E1 = C

dγ

1 , E2 = C
dγ

2 .

Prover sends (uβ , D1, D2, E1, E2, eρ, eγ) to the verifier.
4 Verifier check if eρ, eγ ∈ [0, q − 1] and:

(D1E1)
qpkeρC

eγ

1 fuβ = S1C̃
c
1 , (D2E2)

qg
eρ
q C

eγ

2 = S2C̃
c
2 ,

heγ = S3H
c.

If so, the verifier sends 

$←− Primes(λ).

5 Prover finds qρ ∈ Z and rρ, rγ ∈ [0, 
 − 1] s.t. uρ = qρ
 + rρ and uγ = qγ
 + rγ .
Prover computes:

Q1 = pkqρ , Q2 = g
qρ
q , R1 = C

qγ

1 , R2 = C
qγ

2 , P1 = hqγ .

Prover sends (Q1, Q2, R1, R2, P1, rρ, rγ) to the verifier.
6 Verifier accepts if rρ, rγ ∈ [0, 
 − 1] and:

(Q1R1)
�pkrρC

rγ

1 fuβ = S1C̃
c
1 , (Q2R2)

�g
rρ
q C

rγ

2 = S2C̃
c
2 ,

P �
1hrγ = S3H

c.
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